79 research outputs found
Classification of river morphology and hydrology to support management and restoration
The work leading to this paper has received funding from the European Union’s FP7 programme under Grant Agreement No. 282656 (REFORM
Erosion and the sediment conveyor in central Australia
Why are the Neogene sedimentary fills across central Australia generally thin and discontinuous?
One long-standing explanation is that sluggish tectonism and intensified aridity have combined to
suppress rates of erosion and sediment production yielding a landscape crowded with inherited, preMiocene forms. Quantifying rates of sediment production, residence time and transport is possible
with numerous methods, but the recent growth of cosmogenic nuclide (CN) analysis has provided
unprecedented quantitative insights to rates of landscape evolution. Measurements of in situ
produced cosmogenic 10Be and 26Al integrate rates of surface processes over million-year
timescales—the last part of the Neogene in which aridity has strengthened across the continental
interior. We present a compilation of ~600 published and unpublished 10Be and 26Al measurements
from central Australia with a focus on the Neogene Eyre Basin and its periphery.
Outlying and inlying bedrock uplands serve as engines of sediment production via erosion of bedrock.
Surrounding the bedrock outcrops are vast sediment conveyors of varying efficiency and tempo:
hillslopes, pediments, and alluvial fans are interim storage/burial zones for sediment in transit to the
network of low-gradient rivers, dunes, and playas towards base level. Interactions between fluvial and
aeolian processes are especially pertinent to sediment flux in the Eyre Basin. Major rivers such as the
Cooper and Finke traverse dunefields in their lower reaches where quantities of alluvia are
recirculated into dunes and vice versa. Tracking the trajectories of sediment from source-to-sink
(including aeolian recirculation) remains a major challenge, but is central to unravelling the
sedimentary dynamics of central Australia's Neogene basins. Based on the CN compilation we
estimate 1) spatially averaged erosion rates at the scale of a hillslope or river catchment; 2) pointbased erosion rates on bedrock surfaces; 3) residence time of sediment in hillslope regolith and
alluvial fans; and 4) cumulative burial history of sediments in transit.
Catchment-scale erosion rates (n~100) are consistently low (<10 m/Myr) and include some of the
lowest rates ever measured (~0.3 m/Myr); however, a small group of catchments in the Flinders Ras
yield higher erosion rates (~30–60 m/Myr). Bedrock hillslopes (n~200) tend to erode even slower (<5
m/Myr), with a subset of Flinders Ras sites again being the exception (~10–30 m/Myr) and suggesting
the influence of recent tectonism. Several CN depth-profiles measured on hillslopes and alluvial fans
indicate sediment residence times >0.5 Myr, and high-resolution sampling along three hillslopes with
differing morphology (linear, convex, and concave) reveals major variations in sediment production
and transport rates that hint at the long-term evolution. In the rivers, fluvial sediments show a weak
tendency to increase cumulative burial history downstream (1–2 Myr), consistent with the expanding
accommodation space for storage and burial. Dune sediments sampled in the Simpson and Tirari
dunefields (n~16) contain cumulative burial histories (up to 1.5 Myr) similar to that of the intersecting
rivers. This points to an intimate mix of fluvial and aeolian processes in areas approaching base level.
Curiously, these sediments occur in the lowest part of the continent and contain the longest histories
of cumulative burial, yet do not form part of the thickest sedimentary fills in the Eyre Basin
Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data
Floodplain formation and sediment stratigraphy resulting from oblique accretion on the Murrumbidgee River, Australia
Oblique accretion is a significant process of deposition along low-energy, mixed-load and suspended-load Australian rivers. Previously described as accretionary bank deposits sandwiched between well-developed point bars of sand and gravel and muddy overbank deposits, fine-grained oblique-accretion deposits dominate the floodplain stratigraphy of many inland Australian rivers. They contribute more than 65% of floodplain sediments along the Murrumbidgee River and almost all of the floodplain formed by bend migration on the suspended-load channels of the Darling and Cooper basins. Deposits consist mainly of alternating thin beds of sand and mud (inclined heterolithic stratification), with some plant litter, that form as drapes on the prograding bank. These beds dip mostly channelwards and quickly wedge out as they grade up and onto the floodplain. Because oblique accretion traps nearly all of the sediment deposited from suspended load near the channel margin, vertical accretion on distal areas of the floodplain is minimal. Where oblique accretion is associated with scroll formation, the resulting deposits are more complex, sometimes including a component that slopes away from the channel on the distal side of the first floodplain scroll. A model is presented showing how, with point bars or scrolls either present or absent, oblique accretion can make a significant contribution to the preservation of fine-grained within-channel deposits in contemporary floodplains. The examples presented here demonstrate that analogues to ancient point-bar deposits containing alternating sandstone and shale sequences are common in the low-energy fluvial environments of inland Australia
Commentary on a "Conceptual model for complex river responses using an expanded Lane diagram by David Dust and Ellen Wohl", Geomorphology, Volume 139-140, March 2012, Pages 109-121
This paper presents a revision of a river-flow response model by Dust and Wohl (2012). In particular, serious confusion of the relationship between sediment transport capacity and width-to-depth ratio is clarified. As a consequence, we propose a reasonable qualitative model for understanding the complexity of river responses as illustrated in an appropriately modified form of the Lane diagram, which identifies the equilibrium condition based on the balance between channel aggradation and degradation
Modern depositional processes in a confined bedrock setting: benches of the Shoalhaven river
The 8th International Conference on Geomorphology of the International Association of Geomorphologists (IAG/AIG) took place in Paris at the Cité des Sciences de La Villette from August 27 to 31, 2013. The main topic of this 8th Conference was "Geomorphology and Sustainability". Organized by the Groupe Français de Géomorphologie (GFG) and open to all scientists and practitioners, this Conference included 26 scientific sessions, 5 key-note lectures and one Workshop devoted to Young Geomorphologists.
YOUNG GEOMORPHOLOGISTS SESSION
Convenors: Etienne COSSART, Johnny DOUVINET & Stuart LANE
This session welcomed young scientists (PhD students, post-doctorates) who were interested in discussing new approaches and methods in geomorphology (spatial analysis, mathematical modelling, conceptual and quantitative approaches and links between them). Presentations could focus on any component of the discipline and related earth sciences (hydrology, Quaternary geology, soil sciences, etc.), and be either fundamental or applied. Preliminary results and discussions of fieldwork and methodological strategies (observation, data acquisition before modelling) were appropriate, as well as methodological developments, such as geomorphic mapping through GIS. Equally, numerical simulation approaches such as those linked to complexity theory (agent-based modelling, Cellular Automata) or physically-based methods for specific process representations have been welcomed. The participants of this session have been invited to participate to the intensive course for young geomorphologists held at the end of the conference (from September 1st to 3rd).The lower Shoalhaven River provides an opportunity to examine bench processes in a confined setting.
Stratigraphic analysis of trenches and augur holes, ground penetrating radar, Hec-RAS modelling and
geochronological techniques combine to identify that benches of multiple levels along Bull Reach are composed
of coarse material and have been extensively eroded and reworked by modern events. Kermode et al. (2012)
established the long-term polycyclical nature of the higher alluvial surfaces (up to 193 ka in age), and this is
contrasted with the youth of the lower inset alluvial surfaces, which are shown to be less than 270 years in age.
This study evaluates the relative significance of both flood regime and effects of European settlement on the
geomorphic effectiveness of high magnitude events and investigates the characteristics of bench formation in
this confined setting. It characterises the nature of depositional events and the relationship between facies at an
event scale. Using Hec-RAS modelling, events of different recurrence intervals are compared to explore the
relative impact of varying flood magnitudes. The results bring into question the theory that inundation frequencies
of these surfaces are constant, or associated with formative processes
Changes in fire regimes since the last glacial maximum: an assessment based on a global synthesis and analysis of charcoal data
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ?11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ?19,000 to ?17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ?13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ?3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load
Late Quaternary aeolian and fluvial interactions on the Cooper Creek Fan and the association between linear and source-bordering dunes, Strzelecki Desert, Australia.
The Innamincka Dome and associated low-gradient fan in the Strzelecki Desert is the product of Cenozoic crustal warping that has aided formation of an extensive array of palaeochannels, source-bordering transverse dunes and superimposed linear dunes. These dunes have impeded the course of Cooper Creek and provided a repository of evidence for Quaternary climate change as well as the interactive processes between transverse and linear dune formation. At Turra, Gidgealpa and sites nearby are extensive fluvial and aeolian sand bodies that date from marine isotope stages (MIS) 8–3 and the Last Glacial Maximum (LGM) and are now surrounded or buried by overbank mud. The sandy alluvium was deposited on the downstream slope of the dome by large channels transporting abundant bedload, subsequently blown northward to form transverse dunes from what were probably seasonally-exposed bars in a palaeo-Cooper system. Thermoluminescence (TL) and optically stimulated luminescence (OSL) ages demonstrate that the base of the dune complex is at least MIS 7 in age (~250 ka) but that it has been subsequently reworked by wind with additional sand blown from the river. Source-bordering dunes formed during a period of enhanced river flow and sand supply from ~120 to 100 ka, with another short episode of the same at ~85–80 ka and from ~68 to 53. The LGM was associated with enhanced flows and the supply of dune sediment, from 28 to 18 ka. Pronounced river flow and dune activity occurred in the early to mid Holocene, but there is no evidence of dunes being supplied from Cooper Creek since the LGM. The dunes forming the oldest basal sand units appear to be largely transverse in form and are aligned roughly parallel to adjacent east–west trending palaeochannels. Linear dunes have formed from and over these, and yield basal ages ranging from MIS 5 or MIS 4 but continuing to accrete and rework through to the Holocene.
The study results in one of the few detailed chronological investigations of the interaction between transverse and linear dunes. It is apparent that long-distance sand transport has played no significant role in dune formation here for the linear dunes show no significant downwind decline in ages. Linear dunes appear to have accreted vertically from underlying transverse dunes. A wind-rift vertical accretion model with only minor lengthwise extension is the dominant mode of linear dune formation in this section of the Strzelecki Desert, the bulk of dune sediment being sourced from adjacent swales since the LGM. © 2010, Elsevier Ltd
- …
