28 research outputs found
Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process
for the ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS)BACKGROUND Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. METHODS Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. RESULTS The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag ₄₀ and 35% had autocorrelation through to lag ₄₀; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. CONCLUSIONS The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.John L Moran, Patricia J Solomo
Multivariate one-sided control charts
Process knowledge can be exploited to improve the performance of control charts and it is not unusual to know that a specific variable shifts above or below its mean under an assignable cause. In such a case, a one-sided control chart is common. The available statistical theory for the one-sided tests is used to provide a reasonable compromise for a numerical procedure to design and implement multivariate solutions. Although simulation is used in the analysis, it is not a direct estimate of performance through simulation. Instead, weights are estimated and these are used to easily set a desired on-target average run length. Furthermore, an interesting quadratic programming solution is incorporated into the analysis. Then the statistical results are extended to a partial one-sided case where only some ( not all) variables are known to shift in one direction and the numerical procedure is extended to design and implement the charts. A modern method can blend theory and algorithms into a practical solution. We conclude that modern computer software permits an efficient solution to this problem with meaningful performance advantages over traditional multivariate control charts
A unification and some corrections to Markov chain approaches to develop variable ratio sampling scheme control charts
Quality control charts, Variable sample size (VSS), Variable sampling intervals (VSI), Variable sample size and sampling intervals (VSSVSI), Markov chain, Adjusted average time to signal (AATS),
Sequential and non-sequential acceptance sampling plans for autocorrelated processes using ARMA(p,q) models
Autoregressive models, Moving average models, Sequential probability ratio, Multivariate normal distribution,
