148 research outputs found

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Learning curves and long-term outcome of simulation-based thoracentesis training for medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation-based medical education has been widely used in medical skills training; however, the effectiveness and long-term outcome of simulation-based training in thoracentesis requires further investigation. The purpose of this study was to assess the learning curve of simulation-based thoracentesis training, study skills retention and transfer of knowledge to a clinical setting following simulation-based education intervention in thoracentesis procedures.</p> <p>Methods</p> <p>Fifty-two medical students were enrolled in this study. Each participant performed five supervised trials on the simulator. Participant's performance was assessed by performance score (PS), procedure time (PT), and participant's confidence (PC). Learning curves for each variable were generated. Long-term outcome of the training was measured by the retesting and clinical performance evaluation 6 months and 1 year, respectively, after initial training on the simulator.</p> <p>Results</p> <p>Significant improvements in PS, PT, and PC were noted among the first 3 to 4 test trials (p < 0.05). A plateau for PS, PT, and PC in the learning curves occurred in trial 4. Retesting 6 months after training yielded similar scores to trial 5 (p > 0.05). Clinical competency in thoracentesis was improved in participants who received simulation training relative to that of first year medical residents without such experience (p < 0.05).</p> <p>Conclusions</p> <p>This study demonstrates that simulation-based thoracentesis training can significantly improve an individual's performance. The saturation of learning from the simulator can be achieved after four practice sessions. Simulation-based training can assist in long-term retention of skills and can be partially transferred to clinical practice.</p

    HSPB1, HSPB6, HSPB7 and HSPB8 Protect against RhoA GTPase-Induced Remodeling in Tachypaced Atrial Myocytes

    Get PDF
    BACKGROUND: We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. METHODS AND RESULTS: Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca²⁺ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. CONCLUSION: Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family

    Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks

    Get PDF
    Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons

    Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    Get PDF
    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute to the development of ovarian cancer
    corecore