9 research outputs found
Green Crab (Carcinus maenas) Foraging Efficiency Reduced by Fast Flows
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities
Phenotypic plasticity of Myzus persicae (Hemíptera: Aphididae) raised on Brassica oleracea L. var. acephala (kale) and Raphanus sativus L. (radish)
Habitat-specific size structure variation in periwinkle populations (Littorina littorea) caused by biotic factors
International audienceShell size distribution patterns of marine gastropod populations may vary considerably across different environments. We investigated the size and density structure of genetically continuous periwinkle populations () on an exposed rocky and a sheltered sedimentary environment on two nearby islands in the south-eastern North Sea (German Bight). On the sedimentary shore, periwinkle density (917 ± 722 individuals m) was about three times higher than on the rocky shore (296 ± 168 individuals m). Mean (9.8 ± 3.9 mm) and maximum (22 mm) shell size of on the sedimentary shore were smaller than on the rocky shore (21.5 ± 4.2 and 32 mm, respectively), where only few small snails were found. Additionally, periwinkle shells were thicker and stronger on the rocky than on the sedimentary shore. To ascertain mechanisms responsible for differences in population structures, we examined periwinkles in both environments for growth rate, predation pressure, infection with a shell boring polychaete () and parasitic infestation by trematodes. A crosswise transplantation experiment revealed better growth conditions on the sedimentary than on the rocky shore. However, crab abundance and prevalence of parasites and in adult snails were higher on the sedimentary shore. Previous investigations showed that crabs prefer large periwinkles infested with . Thus, we suggest that parasites and shell boring in conjunction with an increased crab predation pressure are responsible for low abundances of large periwinkles on the sedimentary shore while high wave exposure may explain low densities of juvenile on the rocky shore. We conclude that biotic factors may strongly contribute to observed differences in size structure of the populations studied on rocky and sedimentary shores
