3,084 research outputs found

    Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1

    Get PDF
    The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continue to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit

    An elementary stringy estimate of transport coefficients of large temperature QCD

    Full text link
    Modeling QCD at large temperature with a simple holographic five dimensional theory encoding minimal breaking of conformality, allows for the calculation of all the transport coefficients, up to second order, in terms of a single parameter. In particular, the shear and bulk relaxation times are provided. The result follows by deforming the AdS background with a scalar dual to a marginally relevant operator, at leading order in the deformation parameter.Comment: 11 pages; v2: comments and references adde

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Long-Lived Neutralino NLSPs

    Full text link
    We investigate the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. Specifically, we focus on the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation. We show that a combination of searches using the inner detector and the muon spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5 mm. We further show that events from Z(l+l-) can be used for detailed kinematic reconstruction, leading to accurate determinations of the neutralino mass and lifetime. In particular, we examine the prospects for detailed event study at ATLAS using the ECAL (making use of its timing and pointing capabilities) together with the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there is a region in parameter space where the Tevatron could potentially discover new physics in the delayed Z(l+l-)+MET channel. While our discussion centers on gauge mediation, many of the results apply to any scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure

    Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 study

    Get PDF
    Lower socioeconomic status (SES) is strongly associated with an increased risk of morbidity and premature mortality, but it is not known if the same is true for telomere length, a marker often used to assess biological ageing. The West of Scotland Twenty-07 Study was used to investigate this and consists of three cohorts aged approximately 35 (N = 775), 55 (N = 866) and 75 years (N = 544) at the time of telomere length measurement. Four sets of measurements of SES were investigated: those collected contemporaneously with telomere length assessment, educational markers, SES in childhood and SES over the preceding twenty years. We found mixed evidence for an association between SES and telomere length. In 35-year-olds, many of the education and childhood SES measures were associated with telomere length, i.e. those in poorer circumstances had shorter telomeres, as was intergenerational social mobility, but not accumulated disadvantage. A crude estimate showed that, at the same chronological age, social renters, for example, were nine years (biologically) older than home owners. No consistent associations were apparent in those aged 55 or 75. There is evidence of an association between SES and telomere length, but only in younger adults and most strongly using education and childhood SES measures. These results may reflect that childhood is a sensitive period for telomere attrition. The cohort differences are possibly the result of survival bias suppressing the SES-telomere association; cohort effects with regard different experiences of SES; or telomere possibly being a less effective marker of biological ageing at older ages

    An iterative algorithm for parametrization of shortest length shift registers over finite rings

    Get PDF
    The construction of shortest feedback shift registers for a finite sequence S_1,...,S_N is considered over the finite ring Z_{p^r}. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S_1,...,S_N, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S_1, and constructs at each step a particular type of minimal Gr\"obner basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reciprocal sequence S_N,...,S_1.Comment: Submitte

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Thermal photons in QGP and non-ideal effects

    Full text link
    We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the \textit{non-ideal} gas equation of state i.e ϵ3P0\epsilon-3\,P\,\neq 0 behaviour of the expanding plasma, which is important near the phase-transition point, can significantly slow down the hydrodynamic expansion and thereby increase the photon production-rates. Inclusion of the bulk viscosity may also have similar effect on the hydrodynamic evolution. However the effect of bulk viscosity is shown to be significantly lower than the \textit{non-ideal} gas equation of state. We also analyze the interesting phenomenon of bulk viscosity induced cavitation making the hydrodynamical description invalid. We include the viscous corrections to the distribution functions while calculating the photon spectra. It is shown that ignoring the cavitation phenomenon can lead to erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
    corecore