160 research outputs found
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Study of Zγ events and limits on anomalous ZZγ and Zγγ couplings in pp̄ collisions at s=1.96TeV
We present a measurement of the Zγ production cross section and limits on anomalous ZZγ and Zγγ couplings for form-factor scales of Λ=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the eeγ (μμγ) final state using 320(290)pb-1 of pp̄ collisions at s=1.96TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h10,30Z|<0.23, |h20,40Z|<0.020, |h10,30γ|<0.23, and |h20,40γ|<0.019 for Λ=1000GeV. © 2005 The American Physical Society
A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis
BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF
transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport,
chronic lung infections, inflammation and eventual respiratory failure. With the exception of the
small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is
suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect.
The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy
formulation through preclinical and clinical development.
OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of
1 year in patients with CF.
DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome
complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward
Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1).
Allocation was blinded by masking nebuliser chambers.
SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm,
version 4.6 database.
PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1)
between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group
(≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene
therapy (78 randomised).
INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at
28 (±5)-day intervals over 1 year.
MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1
over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety
measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural
disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a
validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory
markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene
deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and
lower airway potential difference.
RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI)
0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital
capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching
statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective
of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4%
(95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more
mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI.
The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No
difference in treatment-attributable AEs was seen between the placebo and active groups.
CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with
an improvement in lung function, other clinically relevant parameters and bronchial CFTR function,
compared with placebo.
LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by
detectable improvement in patients’ quality of life.
FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency,
the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of
repeated administration.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867
Measurement of the top quark mass using the matrix element technique in dilepton final states
We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84 GeV
Measurement of spin correlation between top and antitop quarks produced in pp- collisions at √s = 1.96 TeV
We present a measurement of the correlation between the spins of t and t- quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fb-1. The measured value of the correlation coefficient in the off-diagonal basis, Ooff=0.89±0.22(stat+syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations
Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models
Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120 GeV, 0.38 pb at mH=165 GeV, and 0.83 pb at mH=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe
Properties of Z±c(3900) produced in pp¯ collisions
We study the production of the exotic charged charmoniumlike state
Z
±
c
(
3900
)
in
p
¯
p
collisions through the sequential process
ψ
(
4260
)
→
Z
±
c
(
3900
)
π
∓
,
Z
±
c
(
3900
)
→
J
/
ψ
π
±
. Using the subsample of candidates originating from semi-inclusive weak decays of
b
-flavored hadrons, we measure the invariant mass and natural width to be
M
=
3902.6
+
5.2
−
5.0
(
stat
)
+
3.3
−
1.4
(
syst
)
MeV
and
Γ
=
3
2
+
28
−
21
(
stat
)
+
26
−
7
(
syst
)
MeV
, respectively. We search for prompt production of the
Z
±
c
(
3900
)
through the same sequential process. No significant signal is observed, and we set an upper limit of 0.70 at the 95% credibility level on the ratio of prompt production to the production via
b
-hadron decays. The study is based on
10.4
f
b
−
1
of
p
¯
p
collision data collected by the D0 experiment at the Fermilab Tevatron collider
Studies of X(3872) and ψ(2S) production in p\bar{p}over-bar collisions at 1.96 TeV
We present various properties of the production of the X (3872) and ψ(2S) states based on 10.4fb‾¹ collected by the D0 experiment in Tevatron p\bar{p} collisions at \sqrt{s} = 1.96 TeV. For both states, we measure the nonprompt fraction fNP of the inclusive production rate due to decays of b-flavored hadrons. We find the fNP values systematically below those obtained at the LHC. The fNP fraction for ψ(2S) increases with transverse momentum, whereas for the X(3872) it is constant within large uncertainties, in agreement with the LHC results. The ratio of prompt to nonprompt ψ(2S) production, (1 - fNP)/fNP, decreases only slightly going from the Tevatron to the LHC, but for the X(3872), this ratio decreases by a factor of about 3. We test the soft-pion signature of the X(3872) modeled as a weakly bound charm-meson pair by studying the production of the X(3872) as a function of the kinetic energy of the X(3872) and the pion in the X(3872) π center-of-mass frame. For a subsample consistent with prompt production, the results are incompatible with a strong enhancement in the production of the X(3872) at the small kinetic energy of the X(3872) and the π in the X(3872)π center-of-mass frame expected for the X + soft-pion production mechanism. For events consistent with being due to decays of hadrons, there is no significant evidence for the soft-pion effect, but its presence at the level expected for the binding energy of 0.17 MeV and the momentum scale Λ = M(π) is not ruled out
Search for narrow t(t)over-bar resonances in p(p)over-bar collisions at root s=1.8 TeV
A search for narrow resonances that decay into t (t) over bar pairs has been performed using 130 pb(-1) of data in the lepton + jets channel collected by the DO detector in p (p) over bar collisions at roots=1.8 TeV. There is no significant deviation observed from the standard-model predictions at a top-quark mass of 175 GeV/c(2). We therefore present upper limits at the 95% confidence level on the product of the production cross section and branching fraction to t (t) over bar for narrow resonances as a function of the resonance mass M-X. These limits are used to exclude the existence of a leptophobic top-color particle with mass M-X<560 GeV/c(2), using a theoretical cross section for a width Gamma(X)=0.012M(X)
Combination of D0 measurements of the top quark mass
We present a combination of measurements of the top quark mass by the D0 experiment in the lepton+jets and dilepton channels. We use all the data collected in Run I (1992–1996) at √s=1.8 TeV and Run II (2001–2011) at √s=1.96 TeV of the Tevatron p¯p collider, corresponding to integrated luminosities of 0.1 fb−1 and 9.7 fb−1, respectively. The combined result is: mt=174.95±0.40(stat)±0.64(syst) GeV=174.95±0.75 GeV
- …
