45 research outputs found

    Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin

    Get PDF
    Animal health depends on the ability of immune cells to kill invading pathogens, and on the resilience of tissues to tolerate the presence of pathogens. Trueperella pyogenes causes tissue pathology in many mammals by secreting a cholesterol-dependent cytolysin, pyolysin (PLO), which targets stromal cells. Cellular cholesterol is derived from squalene, which is synthesized via the mevalonate pathway enzymes, including HMGCR, FDPS and FDFT1. The present study tested the hypothesis that inhibiting enzymes in the mevalonate pathway to reduce cellular cholesterol increases the resilience of stromal cells to PLO. We first verified that depleting cellular cholesterol with methyl-β-cyclodextrin increased the resilience of stromal cells to PLO. We then used siRNA to deplete mevalonate pathway enzyme gene expression, and used pharmaceutical inhibitors, atorvastatin, alendronate or zaragozic acid to inhibit the activity of HMGCR, FDPS and FDFT1, respectively. These approaches successfully reduced cellular cholesterol abundance, but mevalonate pathway enzymes did not affect cellular resilience equally. Inhibiting FDFT1 was most effective, with zaragozic acid reducing the impact of PLO on cell viability. The present study provides evidence that inhibiting FDFT1 increases stromal cell resilience to a cholesterol-dependent cytolysin

    Comparison of effectiveness of Halo-femoral traction after anterior spinal release in severe idiopathic and congenital scoliosis: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Halo-femoral traction could gradually improve the coronal and sagittal deformity and restore the trunk balance through the elongation of the spine. The purpose of this retrospective study was to assess the effectiveness of Halo-femoral traction after anterior spinal release in the management of severe idiopathic and congenital scoliosis.</p> <p>Methods</p> <p>Sixty patients with severe and rigid curve treated with anterior spinal release, Halo-femoral traction, and second stage posterior spinal fusion were recruited for this retrospective study. Idiopathic Scoliosis (IS) group was 30 patients (23 females and 7 males) with mean age of 15.5 years. The average coronal Cobb angle was 91.6° and the mean global thoracic kyphosis was 50.6°. The curve type of these patients were 2 with Lenke 1AN, 4 with Lenke 1A+, 1 with Lenke 1BN, 10 with Lenke 1CN, 3 with Lenke 1C+, 3 with Lenke 3CN, 3 with Lenke 3C+, and 4 with Lenke 5C+. Congenital Scoliosis (CS) group included 30 patients (20 females and 10 males) with average age of 15.2 years. The average coronal Cobb angle of the main curve before operation was 95.7° and the average thoracic kyphosis was 70.2°. All patients had a minimum 12-month follow-up radiograph (range 12–72 months, mean 38 months).</p> <p>Results</p> <p>The average traction time was 23 days and the average traction weight was 16 kg. Four patients experienced brachial plexus palsy and complete nerve functional restoration was achieved at two months follow-up. For the IS group, the post-operative mean Cobb angle of major curve averaged 40.1° with correction rate of 57.5%. For the CS group, the post-operative mean Cobb angle was 56.5° with average correction rate of 45.2%. The difference in curve magnitude between the IS and CS patients after posterior correction was statistically significant (t = 4.15, p < 0.001). The correction rate of kyphosis between IS and CS patients was also statistically significant (t = -2.59, p < 0.016).</p> <p>Conclusion</p> <p>Halo-femoral traction was a safe, well-tolerated and effective method for the treatment of severe and rigid scoliosis patients. The posterior correction rate obtained after anterior release and traction was significant superior than that recorded from side bending film in current study.</p

    Cloning and functional characterization of a fructan 1-exohydrolase (1-FEH) in edible burdock (Arctium lappa L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported on the variation of total fructooligosaccharides (FOS), total inulooligosaccharides (IOS) and inulin in the roots of burdock stored at different temperatures. During storage at 0°C, an increase of FOS as a result of the hydrolysis of inulin was observed. Moreover, we suggested that an increase of IOS would likely be due to the synthesis of the IOS by fructosyltransfer from 1-kestose to accumulated fructose and elongated fructose oligomers which can act as acceptors for fructan:fructan 1-fructosyltransferase (1-FFT). However, enzymes such as inulinase or fructan 1-exohydorolase (1-FEH) involved in inulin degradation in burdock roots are still not known. Here, we report the isolation and functional analysis of a gene encoding burdock 1-FEH.</p> <p>Results</p> <p>A cDNA, named <it>aleh1</it>, was obtained by the RACE method following PCR with degenerate primers designed based on amino-acid sequences of FEHs from other plants. The <it>aleh1 </it>encoded a polypeptide of 581 amino acids. The relative molecular mass and isoelectric point (<it>pI</it>) of the deduced polypeptide were calculated to be 65,666 and 4.86. A recombinant protein of <it>aleh1 </it>was produced in <it>Pichia pastoris</it>, and was purified by ion exchange chromatography with DEAE-Sepharose CL-6B, hydrophobic chromatography with Toyopearl HW55S and gel filtration chromatography with Toyopearl HW55S. Purified recombinant protein showed hydrolyzing activity against β-2, 1 type fructans such as 1-kestose, nystose, fructosylnystose and inulin. On the other hand, sucrose, neokestose, 6-kestose and high DP levan were poor substrates.</p> <p>The purified recombinant protein released fructose from sugars extracted from burdock roots. These results indicated that <it>aleh1 </it>encoded 1-FEH.</p

    Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri

    Get PDF
    BACKGROUND: Photodynamic antimicrobial chemotherapy (PACT) combines light, a light-absorbing molecule that initiates a photochemical or photophysical reaction, and oxygen. The combined action of these three components originates reactive oxygen species that lead to microorganisms' destruction. The aim was to evaluate the efficiency of PACT on Vibrio fischeri: 1) with buffer solution, varying temperature, pH, salinity and oxygen concentration values; 2) with aquaculture water, to reproduce photoinactivation (PI) conditions in situ. METHODOLOGY/PRINCIPAL FINDINGS: To monitor the PI kinetics, the bioluminescence of V. fischeri was measured during the experiments. A tricationic meso-substituted porphyrin (Tri-Py(+)-Me-PF) was used as photosensitizer (5 µM in the studies with buffer solution and 10-50 µM in the studies with aquaculture water); artificial white light (4 mW cm(-2)) and solar irradiation (40 mW cm(-2)) were used as light sources; and the bacterial concentration used for all experiments was ≈10(7) CFU mL(-1) (corresponding to a bioluminescence level of 10(5) relative light units--RLU). The variations in pH (6.5-8.5), temperature (10-25°C), salinity (20-40 g L(-1)) and oxygen concentration did not significantly affect the PI of V. fischeri, once in all tested conditions the bioluminescent signal decreased to the detection limit of the method (≈7 log reduction). The assays using aquaculture water showed that the efficiency of the process is affected by the suspended matter. Total PI of V. fischeri in aquaculture water was achieved under solar light in the presence of 20 µM of Tri-Py(+)-Me-PF. CONCLUSIONS/SIGNIFICANCE: If PACT is to be used in environmental applications, the matrix containing target microbial communities should be previously characterized in order to establish an efficient protocol having into account the photosensitizer concentration, the light source and the total light dose delivered. The possibility of using solar light in PACT to treat aquaculture water makes this technology cost-effective and attractive

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    IL-1α Signaling Is Critical for Leukocyte Recruitment after Pulmonary Aspergillus fumigatus Challenge

    Get PDF
    Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung

    Structural diversity of fructan in relation to the taxonomy of the Poaceae

    No full text
    No description supplied</jats:p

    Structural diversity of fructan in relation to the taxonomy of the Poaceae

    No full text
    No description supplied</jats:p

    Purification and characterization of fructans with β‐2, 1‐ and β‐2, 6‐glycosidic linkages suitable for enzyme studies

    No full text
    Fructan pentasaccharides were purified, in quantities suitable for use as substrates for enzyme assays, from Neosugar‐p‐(Meijj Seika Kaisha Ltd. Japan), tubers of Helianthus tuberosus L., L., and stems and leaf sheaths of Triticum aestivum L by a combination of gel‐filtration and RP‐HPLC. Fructan of higher molecular mass (mean DP = 30) was purified from Leaves of Lolium rigidum Gaud, that had been induced to accumulate fructan and characterized along; with the commercially available fructan from Cichorium intybus L. (Sigma, St Louis, USA) (mean DP = 33). The fructan pentasaccharide purified from H. tuberosus was found to contain exclusively 2, 1‐linked fructose and terminal fructose and terminal glucose, and was identified as (1, 1, 1)‐kestopentatise. The fructan pentasaccharide purified from Neosugar‐P also contained (1,1,1)‐kestopentaose. although the presence of fructan Klinked glucose and 1 % 2, 6‐linked fructose indicated that a small proportion of other kestopentaoses were present, The fructan pentasaccharide purified from T aestivum consisted of almost exclusively 2,6‐linked fructose and terminal glucose and terminal fructose and was considered to contain predominantly (6,6,6)‐kestopentaose. The presence of 1 % 2,1,6)‐linked fructose indicated the sample also contained a small proportion of branched kestopentanse. The high molecular mass fructan from C. intybus was found to comprise linear molecules containing only 2,1‐linked fructose, terminal glucose and terminal fructose‐ High molecular mass fructan from L. rigidum contained predominantly 2. h‐linked fructose, had predominantly internal glucose, indicated by 2 %, 1.6‐linked glucose, low levels of branching, indicated 2 % 2,1,6‐linked fructose residues; and 1% of the residues were 2,1 ‐linked fructose. Copyright © 1994, Wiley Blackwell. All rights reserved</jats:p

    Purification and characterization of fructans with β‐2, 1‐ and β‐2, 6‐glycosidic linkages suitable for enzyme studies

    No full text
    Fructan pentasaccharides were purified, in quantities suitable for use as substrates for enzyme assays, from Neosugar‐p‐(Meijj Seika Kaisha Ltd. Japan), tubers of Helianthus tuberosus L., L., and stems and leaf sheaths of Triticum aestivum L by a combination of gel‐filtration and RP‐HPLC. Fructan of higher molecular mass (mean DP = 30) was purified from Leaves of Lolium rigidum Gaud, that had been induced to accumulate fructan and characterized along; with the commercially available fructan from Cichorium intybus L. (Sigma, St Louis, USA) (mean DP = 33). The fructan pentasaccharide purified from H. tuberosus was found to contain exclusively 2, 1‐linked fructose and terminal fructose and terminal glucose, and was identified as (1, 1, 1)‐kestopentatise. The fructan pentasaccharide purified from Neosugar‐P also contained (1,1,1)‐kestopentaose. although the presence of fructan Klinked glucose and 1 % 2, 6‐linked fructose indicated that a small proportion of other kestopentaoses were present, The fructan pentasaccharide purified from T aestivum consisted of almost exclusively 2,6‐linked fructose and terminal glucose and terminal fructose and was considered to contain predominantly (6,6,6)‐kestopentaose. The presence of 1 % 2,1,6)‐linked fructose indicated the sample also contained a small proportion of branched kestopentanse. The high molecular mass fructan from C. intybus was found to comprise linear molecules containing only 2,1‐linked fructose, terminal glucose and terminal fructose‐ High molecular mass fructan from L. rigidum contained predominantly 2. h‐linked fructose, had predominantly internal glucose, indicated by 2 %, 1.6‐linked glucose, low levels of branching, indicated 2 % 2,1,6‐linked fructose residues; and 1% of the residues were 2,1 ‐linked fructose. Copyright © 1994, Wiley Blackwell. All rights reserved</jats:p
    corecore