42 research outputs found
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Project FIT: Rationale, design and baseline characteristics of a school- and community-based intervention to address physical activity and healthy eating among low-income elementary school children
<p>Abstract</p> <p>Background</p> <p>This paper describes Project FIT, a collaboration between the public school system, local health systems, physicians, neighborhood associations, businesses, faith-based leaders, community agencies and university researchers to develop a multi-faceted approach to promote physical activity and healthy eating toward the general goal of preventing and reducing childhood obesity among children in Grand Rapids, MI, USA.</p> <p>Methods/design</p> <p>There are four overall components to Project FIT: school, community, social marketing, and school staff wellness - all that focus on: 1) increasing access to safe and affordable physical activity and nutrition education opportunities in the schools and surrounding neighborhoods; 2) improving the affordability and availability of nutritious food in the neighborhoods surrounding the schools; 3) improving the knowledge, self-efficacy, attitudes and behaviors regarding nutrition and physical activity among school staff, parents and students; 4) impacting the 'culture' of the schools and neighborhoods to incorporate healthful values; and 5) encouraging dialogue among all community partners to leverage existing programs and introduce new ones.</p> <p>Discussion</p> <p>At baseline, there was generally low physical activity (70% do not meet recommendation of 60 minutes per day), excessive screen time (75% do not meet recommendation of < 2 hours per day), and low intake of vegetables and whole grains and high intake of sugar-sweetened beverages, French fries and chips and desserts as well as a high prevalence of overweight and obesity (48.5% including 6% with severe obesity) among low income, primarily Hispanic and African American 3<sup>rd</sup>-5<sup>th </sup>grade children (n = 403).</p> <p>Trial registration</p> <p><b>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01385046">NCT01385046</a></b></p
Can early weight loss, eating behaviors and socioeconomic factors predict successful weight loss at 12- and 24-months in adolescents with obesity and insulin resistance participating in a randomised controlled trial?
Reduction in BMI z-score and improvement in cardiometabolic risk factors in obese children and adolescents. The Oslo Adiposity Intervention Study - a hospital/public health nurse combined treatment
Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.
Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-\u3baB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-\u3baB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-\u3baB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture
