34 research outputs found
Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells
Abstract
An animal model of hemoglobin switching has been developed in which anemic adult chickens are treated with 5-azacytidine and sodium butyrate or alpha-aminobutyric acid, thereby resulting in activation of the embryonic rho-globin gene in adult erythroid cells. In vitro nuclear runoff transcription assays using erythroid nuclei from treated birds show that the mechanism of activation of the rho-globin gene is transcriptional whereas no transcriptional activation of the embryonic epsilon-globin gene occurs. The action of 5-azacytidine appears to be as an inhibitor of DNA methylation because other S-phase active cytotoxic drugs, when substituted for 5-azacytidine, do not cause demethylation of the embryonic globin genes, nor do they allow transcriptional activation to occur. Embryonic rho-globin gene activation in this model is not due to selection of primitive erythroid cells since a subpopulation of primitive erythroid cells is not evident either morphologically or when cells are probed for embryonic and adult globin RNA by in situ hybridization. These studies show that demethylation by 5-azacytidine is a prerequisite but not sufficient cis- regulatory event for a high level of transcriptional activation of the embryonic rho-globin gene in adult erythroid cells in vivo. The possible basis for the selective transcriptional activation by sodium butyrate in this system is discussed.</jats:p
Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells
An animal model of hemoglobin switching has been developed in which anemic adult chickens are treated with 5-azacytidine and sodium butyrate or alpha-aminobutyric acid, thereby resulting in activation of the embryonic rho-globin gene in adult erythroid cells. In vitro nuclear runoff transcription assays using erythroid nuclei from treated birds show that the mechanism of activation of the rho-globin gene is transcriptional whereas no transcriptional activation of the embryonic epsilon-globin gene occurs. The action of 5-azacytidine appears to be as an inhibitor of DNA methylation because other S-phase active cytotoxic drugs, when substituted for 5-azacytidine, do not cause demethylation of the embryonic globin genes, nor do they allow transcriptional activation to occur. Embryonic rho-globin gene activation in this model is not due to selection of primitive erythroid cells since a subpopulation of primitive erythroid cells is not evident either morphologically or when cells are probed for embryonic and adult globin RNA by in situ hybridization. These studies show that demethylation by 5-azacytidine is a prerequisite but not sufficient cis- regulatory event for a high level of transcriptional activation of the embryonic rho-globin gene in adult erythroid cells in vivo. The possible basis for the selective transcriptional activation by sodium butyrate in this system is discussed.</jats:p
Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells
Butyrate induces selective transcriptional activation of a hypomethylated embryonic globin gene in adult erythroid cells
Metabolic persistence of fetal hemoglobin
Hereditary persistence of fetal hemoglobin (HPFH) has typically been ascribed to mutations in the beta-globin gene cluster. Pharmacologic agents, including the short-chain fatty acid butyrate, have been shown to upregulate fetal and embryonic globin gene expression. In this report we investigate the possibility that metabolic derangements characterized by an inability to metabolize another short-chain fatty acid, propionate, could be associated with a persistence of fetal hemoglobin unrelated to alterations in the beta-globin cluster. Embryonic globin gene upregulation in a murine adult erythroid cell culture was shown by RNase protection after induction with three short-chain fatty acids (C2-C5). Chart reviews and measurement of fetal hemoglobin in five patients with abnormalities in propionate (C3) metabolism were undertaken; SSCP/dideoxy fingerprint analysis of the gamma-globin gene promoters was done in three of these five patients. Twelve patients with other metabolic derangements served as controls. Only the four patients with clinically severe abnormalities in propionate metabolism (ages 2 to 11), but without anemia, showed a sustained elevation in fetal hemoglobin (3% to 10%). The level of elevation of fetal hemoglobin in these patients, who lack erythropoietic stress, suggests that propionic acid and/or its metabolites are potent stimulators of fetal hemoglobin expression. Study of this group of patients should allow unique insights into the long-term effects of sustained exposure to elevations of short-chain fatty acid levels.</jats:p
Cell-type specificity of interferon-gamma-mediated HLA class I gene transcription in human hematopoietic tumor cells
Major histocompatibility complex class I gene expression plays a central role in cellular immunity and tumor surveillance. A substantial proportion of spontaneous tumors are class I-deficient and numerous experiments have suggested that alterations in class I expression may alter oncogenicity and, as a result, have potential therapeutic impact. Interferons (IFNs) are able to upregulate class I expression by mechanisms that remain to be elucidated, but which appear to be IFN- and cell-type specific. We have characterized in detail the in vivo class I transcriptional response to IFN-gamma in two human hematopoietic tumor cell lines, the class I-deficient K562 cell line and the class I-positive Ramos cell line. In each, IFN-gamma induces a rapid increase in class I transcription, which is sustained in Ramos cells, but transient in K562 cells. In each, stimulation by IFN-gamma is dependent on ongoing protein synthesis, suggesting the requirement for production of a “primary response” protein. These data suggest that more than one type of IFN-gamma-induced signal is operative in the transcriptional response to IFN-gamma. Cycloheximide alone is also capable of inducing a rapid increase in class I transcription in both cell types, suggesting that constitutive attenuation of class I transcription may be a common phenomenon, and that IFN-gamma may act, in part, by interfering with such attenuation.</jats:p
Cell-type specificity of interferon-gamma-mediated HLA class I gene transcription in human hematopoietic tumor cells
Abstract
Major histocompatibility complex class I gene expression plays a central role in cellular immunity and tumor surveillance. A substantial proportion of spontaneous tumors are class I-deficient and numerous experiments have suggested that alterations in class I expression may alter oncogenicity and, as a result, have potential therapeutic impact. Interferons (IFNs) are able to upregulate class I expression by mechanisms that remain to be elucidated, but which appear to be IFN- and cell-type specific. We have characterized in detail the in vivo class I transcriptional response to IFN-gamma in two human hematopoietic tumor cell lines, the class I-deficient K562 cell line and the class I-positive Ramos cell line. In each, IFN-gamma induces a rapid increase in class I transcription, which is sustained in Ramos cells, but transient in K562 cells. In each, stimulation by IFN-gamma is dependent on ongoing protein synthesis, suggesting the requirement for production of a “primary response” protein. These data suggest that more than one type of IFN-gamma-induced signal is operative in the transcriptional response to IFN-gamma. Cycloheximide alone is also capable of inducing a rapid increase in class I transcription in both cell types, suggesting that constitutive attenuation of class I transcription may be a common phenomenon, and that IFN-gamma may act, in part, by interfering with such attenuation.</jats:p
Only the HLA class I gene minimal promoter elements are required for transactivation by human cytomegalovirus immediate early genes
Abstract
The immediate early (IE) genes of human cytomegalovirus (HCMV) are expressed in lymphocytes and are known to transactivate both viral and cellular promoters. The mechanism by which IE gene products of HCMV transactivate expression of the HLA A2 gene promoter in Jurkat cells, a T-lymphocyte cell line, was investigated. Transient expression assays were performed using plasmids containing the HLA A2 promoter-regulatory region linked to the bacterial chloramphenicol acetyltransferase (CAT) gene and a plasmid expressing the CMV IE genes. The upregulation of the HLA A2 promoter by HCVM IE gene products was shown not to be secondary to either interferon-gamma or -alpha. Previously described MHC class I regulatory or enhancer elements such as the interferon-stimulated response element (ISRE), NF-kappa B and H2TF1 binding sequences, and the interferon consensus sequence (ICS) were not required for transactivation of the A2 promoter. Rather, the only known regulatory elements in the HLA A2 promoter necessary for both basal expression and transactivation by HCVM IE gene products are the CCAAT box and TATA box motifs. These results support a model in which HCVM IE gene products act through the minimal HLA A2 promoter elements to increase gene expression.</jats:p
