2,056 research outputs found
Operational Semantics of Process Monitors
CSPe is a specification language for runtime monitors that can directly
express concurrency in a bottom-up manner that composes the system from
simpler, interacting components. It includes constructs to explicitly flag
failures to the monitor, which unlike deadlocks and livelocks in conventional
process algebras, propagate globally and aborts the whole system's execution.
Although CSPe has a trace semantics along with an implementation demonstrating
acceptable performance, it lacks an operational semantics. An operational
semantics is not only more accessible than trace semantics but also
indispensable for ensuring the correctness of the implementation. Furthermore,
a process algebra like CSPe admits multiple denotational semantics appropriate
for different purposes, and an operational semantics is the basis for
justifying such semantics' integrity and relevance. In this paper, we develop
an SOS-style operational semantics for CSPe, which properly accounts for
explicit failures and will serve as a basis for further study of its
properties, its optimization, and its use in runtime verification
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.
Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology
Plastic shrinkage cracking of concrete - Roles of osmotic suction
Plastic shrinkage cracking of concrete occurs when the stresses arising in the concrete, due to a combination of suction and restraints of deformation such as reinforcement or formwork, equal its strength. However, three different types of suctions should be distinguished, namely total, matric and osmotic suctions. Although the total suction comprises matric and osmotic suctions, it is often used interchangeably with matric suction, with the underlying unconfirmed assumption that either the osmotic suction or its effect is negligible. In this paper, after a discussion of the pore moisture suctions and strength of unsaturated early-age concrete, experimental investigations of the suctions arising in, and the tensile strength and shear strength of, fly ash mixed with solutions of different osmotic suctions are described. It was found that osmotic suction has negligible effect on the shear and tensile strength, and hence, by inference, the inter-particle stresses in the fly ash mixture and early-age concrete. This strongly suggests that the role played by osmotic suction in the plastic shrinkage cracking of concrete is minimal and, accordingly, justifies the focus of earlier researchers on matric suction only
New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from the proton. The result is A = -15.05 +-
0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees
and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the
strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the
first error is experimental and the second arises from the uncertainties in
electromagnetic form factors. This measurement is the first fixed-target parity
violation experiment that used either a `strained' GaAs photocathode to produce
highly polarized electrons or a Compton polarimeter to continuously monitor the
electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for
Phys. Lett.
Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci
The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
The InterLACE study: Design, Data Harmonization and Characteristics Across 20 Studies on Women’s Health
Objectives: The International Collaboration for a Life Course Approach to Reproductive Health and Chronic Disease Events (InterLACE) project is a global research collaboration that aims to advance understanding of women’s reproductive health in relation to chronic disease risk by pooling individual participant data from several cohort and cross-sectional studies. The aim of this paper is to describe the characteristics of contributing studies and to present the distribution of demographic and reproductive factors and chronic disease outcomes in InterLACE. Study design: InterLACE is an individual-level pooled study of 20 observational studies (12 of which are longitudinal) from ten countries. Variables were harmonized across studies to create a new and systematic synthesis of life-course data. Main outcome measures: Harmonized data were derived in three domains: 1) socio-demographic and lifestyle factors, 2) female reproductive characteristics, and 3) chronic disease outcomes (cardiovascular disease (CVD) and diabetes). Results: InterLACE pooled data from 229,054 mid-aged women. Overall, 76% of the women were Caucasian and 22% Japanese; other ethnicities (of 300 or more participants) included Hispanic/Latin American (0.2%), Chinese (0.2%), Middle Eastern (0.3%), African/black (0.5%), and Other (1.0%). The median age at baseline was 47 years (Inter-quartile range (IQR): 41–53), and that at the last follow-up was 56 years (IQR: 48–64). Regarding reproductive characteristics, half of the women (49.8%) had their first menstruation (menarche) at 12–13 years of age. The distribution of menopausal status and the prevalence of chronic disease varied considerably among studies. At baseline, most women (57%) were pre- or peri-menopausal, 20% reported a natural menopause (range 0.8–55.6%) and the remainder had surgery or were taking hormones. By the end of follow-up, the prevalence rates of CVD and diabetes were 7.2% (range 0.9–24.6%) and 5.1% (range 1.3–13.2%), respectively. Conclusions: The scale and heterogeneity of InterLACE data provide an opportunity to strengthen evidence concerning the relationships between reproductive health through life and subsequent risks of chronic disease, including cross-cultural comparisons
- …
