4,040 research outputs found
Audition in vampire bats, Desmodus rotundus
1. Within the tonotopic organization of the inferior colliculus two frequency ranges are well represented: a frequency range within that of the echolocation signals from 50 to 100 kHz, and a frequency band below that of the echolocation sounds, from 10 to 35 kHz. The frequency range between these two bands, from about 40 to 50 kHz is distinctly underrepresented (Fig. 3B).
2. Units with BFs in the lower frequency range (10–25 kHz) were most sensitive with thresholds of -5 to -11 dB SPL, and units with BFs within the frequency range of the echolocation signals had minimal thresholds around 0 dB SPL (Fig. 1).
3. In the medial part of the rostral inferior colliculus units were encountered which preferentially or exclusively responded to noise stimuli. — Seven neurons were found which were only excited by human breathing noises and not by pure tones, frequency modulated signals or various noise bands. These neurons were considered as a subspeciality of the larger sample of noise-sensitive neurons. — The maximal auditory sensitivity in the frequency range below that of echolocation, and the conspicuous existence of noise and breathing-noise sensitive units in the inferior colliculus are discussed in context with the foraging behavior of vampire bats
The Josephson heat interferometer
The Josephson effect represents perhaps the prototype of macroscopic phase
coherence and is at the basis of the most widespread interferometer, i.e., the
superconducting quantum interference device (SQUID). Yet, in analogy to
electric interference, Maki and Griffin predicted in 1965 that thermal current
flowing through a temperature-biased Josephson tunnel junction is a stationary
periodic function of the quantum phase difference between the superconductors.
The interplay between quasiparticles and Cooper pairs condensate is at the
origin of such phase-dependent heat current, and is unique to Josephson
junctions. In this scenario, a temperature-biased SQUID would allow heat
currents to interfere thus implementing the thermal version of the electric
Josephson interferometer. The dissipative character of heat flux makes this
coherent phenomenon not less extraordinary than its electric (non-dissipative)
counterpart. Albeit weird, this striking effect has never been demonstrated so
far. Here we report the first experimental realization of a heat
interferometer. We investigate heat exchange between two normal metal
electrodes kept at different temperatures and tunnel-coupled to each other
through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the
system is found to be phase dependent, in agreement with the original
prediction. With our design the Josephson heat interferometer yields
magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and
provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at
235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable
insight into thermal transport in Josephson junctions, our results represent a
significant step toward phase-coherent mastering of heat in solid-state
nanocircuits, and pave the way to the design of novel-concept coherent
caloritronic devices.Comment: 4+ pages, 3 color figure
Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass
To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principle
The relationships between problem characteristics, achievement-related behaviors, and academic achievement in problem-based learning
This study investigated the influence of five problem characteristics on students' achievement-related classroom behaviors and academic achievement. Data from 5,949 polytechnic students in PBL curricula across 170 courses were analyzed by means of path analysis. The five problem characteristics were: (1) problem clarity, (2) problem familiarity, (3) the extent to which the problem stimulated group discussion, (4) self-study, and (5) identification of learning goals. The results showed that problem clarity led to more group discussion, identification of learning goals, and self-study than problem familiarity. On the other hand, problem familiarity had a stronger and direct impact on academic achievement
Ten per cent polarized optical emission from GRB 090102
The nature of the jets and the role of magnetic fields in gamma-ray bursts
(GRB) remains unclear. In a baryon-dominated jet only weak, tangled fields
generated in situ through shocks would be present. In an alternative model,
jets are threaded with large scale magnetic fields that originate at the
central engine and which accelerate and collimate the jets. The way to
distinguish between the models is to measure the degree of polarization in
early-time emission, however previous claims of gamma-ray polarization have
been controversial. Here we report that the early optical emission from GRB
090102 was polarized at the level of P=10+/-1%, indicating the presence of
large-scale fields originating in the expanding fireball. If the degree of
polarization and its position angle were variable on timescales shorter than
our 60-s exposure, then the peak polarization may have been larger than 10 per
cent.Comment: 16 pages, 4 figures. Published in Nature (2009), Vol. 462, p767-76
Evaluating Depressive Symptoms in Schizophrenia: A Psychometric Comparison of the Calgary Depression Scale for Schizophrenia and the Hamilton Depression Rating Scale
Background: The aim of this study was to compare two measures of depression in patients with schizophrenia and schizophrenia spectrum disorder, including patients with delusional and schizoaffective disorder, to conclude implications for their application. Sampling and Methods: A total of 278 patients were assessed using the Calgary Depression Scale for Schizophrenia (CDSS) and the Hamilton Depression Rating Scale (HAMD-17). The Positive and Negative Syndrome Scale (PANSS) was also applied. At admission and discharge, a principal component analysis was performed with each depression scale. The two depression rating scales were furthermore compared using correlation and regression analyses. Results: Three factors were revealed for the CDSS and HAMD-17 factor component analysis. A very similar item loading was found for the CDSS at admission and discharge, whereas results of the loadings of the HAMD-17 items were less stable. The first two factors of the CDSS revealed correlations with positive, negative and general psychopathology. In contrast, multiple significant correlations were found for the HAMD-17 factors and the PANSS sub-scores. Multiple regression analyses demonstrated that the HAMD-17 accounted more for the positive and negative symptom domains than the CDSS. Conclusions:The present results suggest that compared to the HAMD-17, the CDSS is a more specific instrument to measure depressive symptoms in schizophrenia and schizophrenia spectrum disorder, especially in acutely ill patients. Copyright (c) 2012 S. Karger AG, Base
The Cosmic Infrared Background: Measurements and Implications
The cosmic infrared background records much of the radiant energy released by
processes of structure formation that have occurred since the decoupling of
matter and radiation following the Big Bang. In the past few years, data from
the Cosmic Background Explorer mission provided the first measurements of this
background, with additional constraints coming from studies of the attenuation
of TeV gamma-rays. At the same time there has been rapid progress in resolving
a significant fraction of this background with the deep galaxy counts at
infrared wavelengths from the Infrared Space Observatory instruments and at
submillimeter wavelengths from the Submillimeter Common User Bolometer Array
instrument. This article reviews the measurements of the infrared background
and sources contributing to it, and discusses the implications for past and
present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of
Astronomy and Astrophysics, 2001, Vol. 3
Nanoscale phase-engineering of thermal transport with a Josephson heat modulator
Macroscopic quantum phase coherence has one of its pivotal expressions in the
Josephson effect [1], which manifests itself both in charge [2] and energy
transport [3-5]. The ability to master the amount of heat transferred through
two tunnel-coupled superconductors by tuning their phase difference is the core
of coherent caloritronics [4-6], and is expected to be a key tool in a number
of nanoscience fields, including solid state cooling [7], thermal isolation [8,
9], radiation detection [7], quantum information [10, 11] and thermal logic
[12]. Here we show the realization of the first balanced Josephson heat
modulator [13] designed to offer full control at the nanoscale over the
phase-coherent component of thermal currents. Our device provides
magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a
maximum of the flux-to-temperature transfer coefficient reaching 200 mK per
flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the
exact correspondence in the phase-engineering of charge and heat currents,
breaking ground for advanced caloritronic nanodevices such as thermal splitters
[14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
Neuroactive steroids in depression and anxiety disorders: Clinical studies
Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel
Decaying into the Hidden Sector
The existence of light hidden sectors is an exciting possibility that may be
tested in the near future. If DM is allowed to decay into such a hidden sector
through GUT suppressed operators, it can accommodate the recent cosmic ray
observations without over-producing antiprotons or interfering with the
attractive features of the thermal WIMP. Models of this kind are simple to
construct, generic and evade all astrophysical bounds. We provide tools for
constructing such models and present several distinct examples. The light
hidden spectrum and DM couplings can be probed in the near future, by measuring
astrophysical photon and neutrino fluxes. These indirect signatures are
complimentary to the direct production signals, such as lepton jets, predicted
by these models.Comment: 40 pages, 5 figure
- …
