537 research outputs found

    Kinetic Modeling and Optimization of Immobilized Candida antarctica Lipase B Catalysed Synthesis of Butyl-4-Methyl-3-Oxopentanoate using Response Surface Methodology

    Get PDF
    Abstract Response surface methodology (RSM) was used to model and optimize the immobilized Candida antarctica lipase B catalysed synthesis of butyl-4-methyl-3-oxopentanoate. To determine optimum conditions of the transesterification, a four-factor and five-level central composite rotatable design (CCRD) was used. The factors studied were enzyme load (A), reaction temperature (B), methyl-4-methyl-3-oxopentanoate concentration (C) and n-butanol concentration (D). A quadratic polynomial regression model was used to analyze the experimental data at a 95% confidence level (p &lt; 0.05). The results indicated that the RSM approach gave reasonable results for the optimization of the reaction parameters in the range of tested parameters. The optimal conditions for the enzymatic reaction were obtained at 0.01 mol of methyl-4-methyl-3-oxopentanoate and 0.03 mol of n-butanol using 104 mg of Novozym 435 at 55 °C and 300 rpm for 6 h. Under these conditions, the transesterification percentage was 87 %. Further, kinetic modelling of the enzymatic synthesis was illustrated. Initial rate data and progress curve data were used to arrive at a suitable model. The kinetics was found to obey the ternary complex ordered bi-bi model with inhibition by the substrate methyl-4-methyl-3-oxopentanoate. The values of kinetic parameters obtained from nonlinear regression analysis were found to be Vmax of 0.04 mol/L.min; Km(A) 0.11 mol/L; Km(B) 2 mol/L and Ki(A) 2.2 mol/L.</jats:p

    Soy protein–gum karaya conjugate: emulsifying activity and rheological behavior in aqueous system and oil in water emulsion

    Get PDF
    The main objective of this study is to investigate the effects of mixing and conjugation of soy protein isolate (SPI) with gum karaya on the characteristics of the hybrid polymer (protein–gum) in both aqueous systems and oil-in-water (O/W) emulsions. It was hypothesized that the covalent linkage of gum karaya with SPI would improve the emulsifying activity and rheological properties of both polymers. Conjugation occurred under controlled conditions (i.e., 60 °C and 75 % relative humidity, 3 days). The conjugated hybrid polymer produced smaller droplet with better uniformity, higher viscosity and stronger emulsifying activity than native gum karaya, suggesting the conjugated polymer provided a bulkier secondary layer with more efficient coverage around oil droplets, thereby inducing stronger resistance against droplet aggregation and flocculation. Emulsions containing the native gum karaya produced the largest droplet size among all prepared emulsions (D 3,2 = 8.6 μm; D 4,3 = 22.4 μm); while the emulsion containing protein–gum conjugate (1:1 g/g) had the smallest droplet size (D 3,2 = 0.2 μm; D 4,3 = 0.7 μm) with lower polydispersity. The protein–gum conjugate (1:1 g/g) also showed the highest elastic and viscous modulus, the lowest polydispersity (span) and the highest emulsifying activity among all native, mixed and conjugated polymers. Therefore, the percentage of gum karaya used for production of O/W emulsion can be decreased by partially replacing it with the conjugated gum

    Using metrics and sustainability considerations to evaluate the use of bio-based and non-renewable Brønsted acidic ionic liquids to catalyse Fischer esterification reactions

    Get PDF
    Background Ionic liquids have found uses in many applications, one of which is the joint solvation and catalysis of chemical transformations. Suitable Brønsted acidic ionic liquids can be formed by combining lactams with sulphonic acids. This work weighs up the relative benefits and disadvantages of applying these Brønsted acidic ionic liquid catalysts in esterifications through a series of comparisons using green chemistry metrics. Results A new bio-based ionic liquid was synthesised from N-methyl pyrrolidinone and p-cymenesulphonic acid, and tested as a catalyst in three Fischer esterifications under different conditions. An evaluation of the performance of this Brønsted acidic ionic liquid was made through the comparison to other ionic liquid catalysts as well as conventional homogeneous Brønsted acids. Conclusion Extending the argument to feedstock security as well as mass utilisation, ultimately in most instances traditional mineral acids appear to be the most sensible option for Brønsted acid esterification catalysts. Ester yields obtained from Brønsted acidic ionic liquid catalysed procedures were modest. This calls into question the diversity of research exploring esterification catalysis and the role of ionic liquids in esterifications

    Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    Get PDF
    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark

    A model to assess the technological level of small businesses

    Get PDF
    none2In this paper we present a three-dimensional framework (named Cu- be of Corporate Technological Level – CCTL) to evaluate the technological po- sition of small enterprises from different points of view. This framework has been developed from existing tools with similar goals, already proposed by oth- er authors. Compared to existing ones, this framework differs primarily for the inclusion of a collaborative perspective. It reflects the distinctive features of the latest interactive and web 2.0 tools (chat, blogs, forums, ...), that allow compa- nies to manage their relationships with the external stakeholders of the supply chain. The proposed framework has been applied to a sample of small business- es to test its validity. Some business cases with different positions in the Cube are described.This paper is the joint effort of the authors. Francesca Maria Cesaroni developed sections 1, 2 and 5 and Domenico Consoli sections 3 and 4.openF.M.Cesaroni; D.ConsoliCesaroni, FRANCESCA MARIA; D., Consol

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease
    corecore