141 research outputs found

    The large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    Get PDF
    We report a measurement of the large-scale 3-point correlation function of galaxies using the largest dataset for this purpose to date, 777, 202 Luminous Red Galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein (2015b) to compute the multipole moments of the 3PCF in O(N2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques the redshift-space linear and non-linear bias are measured, with 2.6% precision on the former if σ8 is fixed. The data also indicates a 2.8σ preference for the BAO, confirming the presence of BAO in the 3-point function.PreprintNon peer reviewe

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study

    Get PDF
    BACKGROUND: Most patients with ovarian cancer will relapse after receiving frontline platinum-based chemotherapy and eventually develop platinum-resistant or platinum-refractory disease. We report results of avelumab alone or avelumab plus pegylated liposomal doxorubicin (PLD) compared with PLD alone in patients with platinum-resistant or platinum-refractory ovarian cancer. METHODS: JAVELIN Ovarian 200 was an open-label, parallel-group, three-arm, randomised, phase 3 trial, done at 149 hospitals and cancer treatment centres in 24 countries. Eligible patients were aged 18 years or older with epithelial ovarian, fallopian tube, or peritoneal cancer (maximum of three previous lines for platinum-sensitive disease, none for platinum-resistant disease) and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients were randomly assigned (1:1:1) via interactive response technology to avelumab (10 mg/kg intravenously every 2 weeks), avelumab plus PLD (40 mg/m2 intravenously every 4 weeks), or PLD and stratified by disease platinum status, number of previous anticancer regimens, and bulky disease. Primary endpoints were progression-free survival by blinded independent central review and overall survival in all randomly assigned patients, with the objective to show whether avelumab alone or avelumab plus PLD is superior to PLD. Safety was assessed in all patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT02580058. The trial is no longer enrolling patients and this is the final analysis of both primary endpoints. FINDINGS: Between Jan 5, 2016, and May 16, 2017, 566 patients were enrolled and randomly assigned (combination n=188; PLD n=190, avelumab n=188). At data cutoff (Sept 19, 2018), median duration of follow-up for overall survival was 18·4 months (IQR 15·6-21·9) for the combination group, 17·4 months (15·2-21·3) for the PLD group, and 18·2 months (15·8-21·2) for the avelumab group. Median progression-free survival by blinded independent central review was 3·7 months (95% CI 3·3-5·1) in the combination group, 3·5 months (2·1-4·0) in the PLD group, and 1·9 months (1·8-1·9) in the avelumab group (combination vs PLD: stratified HR 0·78 [repeated 93·1% CI 0·59-1·24], one-sided p=0·030; avelumab vs PLD: 1·68 [1·32-2·60], one-sided p>0·99). Median overall survival was 15·7 months (95% CI 12·7-18·7) in the combination group, 13·1 months (11·8-15·5) in the PLD group, and 11·8 months (8·9-14·1) in the avelumab group (combination vs PLD: stratified HR 0·89 [repeated 88·85% CI 0·74-1·24], one-sided p=0·21; avelumab vs PLD: 1·14 [0·95-1·58], one-sided p=0·83]). The most common grade 3 or worse treatment-related adverse events were palmar-plantar erythrodysesthesia syndrome (18 [10%] in the combination group vs nine [5%] in the PLD group vs none in the avelumab group), rash (11 [6%] vs three [2%] vs none), fatigue (ten [5%] vs three [2%] vs none), stomatitis (ten [5%] vs five [3%] vs none), anaemia (six [3%] vs nine [5%] vs three [2%]), neutropenia (nine [5%] vs nine [5%] vs none), and neutrophil count decreased (eight [5%] vs seven [4%] vs none). Serious treatment-related adverse events occurred in 32 (18%) patients in the combination group, 19 (11%) in the PLD group, and 14 (7%) in the avelumab group. Treatment-related adverse events resulted in death in one patient each in the PLD group (sepsis) and avelumab group (intestinal obstruction). INTERPRETATION: Neither avelumab plus PLD nor avelumab alone significantly improved progression-free survival or overall survival versus PLD. These results provide insights for patient selection in future studies of immune checkpoint inhibitors in platinum-resistant or platinum-refractory ovarian cancer. FUNDING: Pfizer and Merck KGaA, Darmstadt, Germany

    Cosmological implications of baryon acoustic oscillation measurements

    Get PDF
    We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0 =67.3 ± 1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO + SN + CMB combination yields matter density Ωm = 0.301 ± 0.008 and curvature Ωk = -0.003 ± 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Λ CDM values at ≈1σ. While the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑mν (95% confidence), improving to ∑mν if we include the lensing signal in the Planck CMB power spectrum. In a flat Λ CDM model that allows extra relativistic species, our data combination yields Neff = 3.43 ± 0.26; while the LyaF BAO data prefer higher Neff when excluding galaxy BAO, the galaxy BAO alone favor Neff ≈ 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates

    SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2, which is now completed, measured medium-resolution (R=1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    Erratum: “The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III” (2011, ApJS, 193, 29)

    Get PDF
    Section 3.5 of Aihara et al. (2011) described various sources of systematic error in the astrometry of the imaging data of the Sloan Digital Sky Survey (SDSS). In addition to these sources of error, there is an additional and more serious error, which introduces a large systematic shift in the astrometry over a large area around the north celestial pole. The region has irregular boundaries but in places extends as far south as declination δ ≈ 41◦. The sense of the shift is that the positions of all sources in the affected area are offset by roughly 250 mas in a northwest direction. We have updated the SDSS online documentation to reflect these errors, and to provide detailed quality information for each SDSS field

    Erratum: “The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III” (2011, ApJS, 193, 29)

    Get PDF
    Section 3.5 of Aihara et al. (2011) described various sources of systematic error in the astrometry of the imaging data of the Sloan Digital Sky Survey (SDSS). In addition to these sources of error, there is an additional and more serious error, which introduces a large systematic shift in the astrometry over a large area around the north celestial pole. The region has irregular boundaries but in places extends as far south as declination δ ≈ 41◦. The sense of the shift is that the positions of all sources in the affected area are offset by roughly 250 mas in a northwest direction. We have updated the SDSS online documentation to reflect these errors, and to provide detailed quality information for each SDSS field
    corecore