74 research outputs found

    An omicron-specific neutralizing antibody test predicts neutralizing activity against XBB 1.5

    Get PDF
    IntroductionUnderstanding the immune status of an individual using neutralizing antibody testing is complicated by the continued evolution of the SARS-CoV-2 virus. Previous work showed that assays developed against the wildtype strain of SARS-CoV-2 were insufficient predictors of neutralization of omicron variants, thus we developed an omicron-specific flow cytometry-based neutralizing antibody test and performed experiments to assess how well it compared to an omicron-specific PRNT assay (gold standard) and whether it could predict neutralizing activity to more recent omicron subvariants such as XBB.1.5.MethodsAccuracy of a novel flow cytometry-based neutralizing antibody (FC-NAb) assay was determined by comparison with an omicron-specific PRNT assay. A series of samples were evaluated in both the omicron FC-NAb assay and a second test was designed to assess neutralization of XBB.1.5.ResultsGood concordance between the omicron FC-NAb test and the omicron PRNT was demonstrated (AUC = 0.97, p <0.001; sensitivity = 94%, specificity = 100%, PPV = 100%, and NPV = 97%). A strong linear relationship between the omicron FC-NAb and neutralization of XBB1.5 was observed (r = 0.83, p<0.001). Additionally, the omicron FC-NAb test was a very strong predictor of positive XBB1.5 NAb activity (AUC = 0.96, p<0.001; sensitivity = 94%, specificity = 90%, positive predictive value = 90%, and negative predictive values = 94%).DiscussionOur data suggest that despite continued evolution of the SARS-CoV-2 spike protein, the omicron FC-NAb assay described here is a good predictor of XBB1.5 neutralizing activity, as evidenced by a strong correlation and good predictive performance characteristics

    Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    Get PDF

    Advances in Nitrogen Handling Strategies to Increase the Productivity of Wheat

    No full text

    A Mathematical Model of the Within-Host Kinetics of SARS-CoV-2 Neutralizing Antibodies Following COVID-19 Vaccination

    Full text link
    AbstractCompelling evidence continues to build to support the idea that SARS-CoV-2 Neutralizing Antibody (NAb) levels in an individual can serve as an important indicator of the strength of protective immunity against infection. It is not well understood why NAb levels in some individuals remain high over time, while in others levels decline rapidly. In this work, we present a two-population mathematical model of within-host NAb dynamics in response to vaccination. By fitting only four host-specific parameters, the model is able to capture individual-specific NAb levels over time as measured by the AditxtScore™ for NAbs. The model can serve as a foundation for predicting NAb levels in the long-term, understanding connections between NAb levels, protective immunity, and break-through infections, and potentially guiding decisions about whether and when a booster vaccination may be warranted.</jats:p

    Table_2_Simultaneous measurement of multiple variant-specific SARS-CoV-2 neutralizing antibodies with a multiplexed flow cytometric assay.docx

    No full text
    IntroductionNeutralizing antibodies (NAbs) have been recognized as surrogates of protection against SARS-CoV-2; however, the emergence of variants/subvariants escaping neutralization suggests that laboratory assessments of NAbs against the ancestral/wild type (WT) antigens likely overestimate the degree of protection.MethodsA novel flow cytometry-based multiplex test system was developed for the simultaneous detection of NAbs of multiple SARS-CoV-2 variants. SARS-CoV-2 antibodies (Abs) including IgG, IgM, IgA isotypes were measured in the same system. Samples from negative, convalesced, vaccinated, boosted, and breakthrough infection (BTI) populations were tested for both NAbs and Abs.ResultsNAbs induced by WT showed neutralization activity that correlated strongly to all variants (R2 > 0.85) except omicron BA.1/BA.2 (R2 DiscussionTaken together, we demonstrated that both Ab and NAb against multiple SARS-CoV-2 variants/subvariants can be reliably detected on the same multiplex platform. Distinguishing NAbs to the appropriate antigenic target of prevalent variants offers the best correlate of protection and aids individual decisions about the appropriateness and cadence of vaccine boosters and other exposure mitigation strategies.</p

    Table_2_An omicron-specific neutralizing antibody test predicts neutralizing activity against XBB 1.5.docx

    No full text
    IntroductionUnderstanding the immune status of an individual using neutralizing antibody testing is complicated by the continued evolution of the SARS-CoV-2 virus. Previous work showed that assays developed against the wildtype strain of SARS-CoV-2 were insufficient predictors of neutralization of omicron variants, thus we developed an omicron-specific flow cytometry-based neutralizing antibody test and performed experiments to assess how well it compared to an omicron-specific PRNT assay (gold standard) and whether it could predict neutralizing activity to more recent omicron subvariants such as XBB.1.5.MethodsAccuracy of a novel flow cytometry-based neutralizing antibody (FC-NAb) assay was determined by comparison with an omicron-specific PRNT assay. A series of samples were evaluated in both the omicron FC-NAb assay and a second test was designed to assess neutralization of XBB.1.5.ResultsGood concordance between the omicron FC-NAb test and the omicron PRNT was demonstrated (AUC = 0.97, p DiscussionOur data suggest that despite continued evolution of the SARS-CoV-2 spike protein, the omicron FC-NAb assay described here is a good predictor of XBB1.5 neutralizing activity, as evidenced by a strong correlation and good predictive performance characteristics.</p
    corecore