2,202 research outputs found
Population genetic structure in European lobsters: implications for connectivity, diversity and hatchery stocking
The European lobster Homarus gammarus is a marine crustacean prized for seafood, but populations across its range are threatened by fishery overexploitation. The species’ larval stages are planktonic, suggesting considerable dispersal among populations. The potential threats of overexploitation and erosion of population structure due to hatchery releases or inadvertent introductions make it important to understand the genetic structuring of populations across multiple geographic scales. Here we assess lobster population structure at a fine scale in Cornwall, southwestern UK, where a hatchery-stocking operation introduces cultured individuals into the wild stock, and at a broader European level, in order to compare the spatial scale of hatchery releases with that of population connectivity. Microsatellite genotypes of 24 individuals from each of 13 locations in Cornwall showed no fine-scale population structure across distances of up to ~230 km. Significant differentiation and isolation by distance were detected at a broader scale, using 300 additional individuals comprising a further 15 European samples. Signals of genetic heterogeneity were evident between an Atlantic cluster and samples from Sweden. Connectivity within the Atlantic and Swedish clusters was high, although evidence for isolation by distance and a transitional zone within the eastern North Sea suggested that direct gene exchange between these stocks is limited and fits a stepping-stone model. We conclude that hatchery-reared lobsters should not be released where broodstock are distantly sourced but, using Cornwall as a case study, microsatellites revealed no evidence that the normal release of hatchery stock exceeds the geographic scale of natural connectivity.European Social FundWorshipful Company of FishmongersBBSRCThis research was supported by Lobster
Grower 2, a 3 yr project funded by Innovate-UK (TS/
N006097/1) and BBSRC (BB/N013891/1) under an AgriTech
Catalyst Industrial Stage Award. We are also greatly
appreciative of the studentship funding provided by the
European Social Fund and of the grant awarded by the Fishmonger’s
Company, UK, both of which made the work possible
Attention deployment during memorizing and executing complex instructions.
We investigated the mental rehearsal of complex action instructions by recording spontaneous eye movements of healthy adults as they looked at objects on a monitor. Participants heard consecutive instructions, each of the form "move [object] to [location]". Instructions were only to be executed after a go signal, by manipulating all objects successively with a mouse. Participants re-inspected previously mentioned objects already while listening to further instructions. This rehearsal behavior broke down after 4 instructions, coincident with participants' instruction span, as determined from subsequent execution accuracy. These results suggest that spontaneous eye movements while listening to instructions predict their successful execution
Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner
The viability of a possible cosmological scenario is investigated. The
theoretical framework is the constrained next-to-minimal supersymmetric
standard model (cNMSSM), with a gravitino playing the role of the lightest
supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest
supersymmetric particle (NLSP). All the necessary constraints from colliders
and cosmology have been taken into account. For gravitino we have considered
the two usual production mechanisms, namely out-of equillibrium decay from the
NLSP, and scattering processes from the thermal bath. The maximum allowed
reheating temperature after inflation, as well as the maximum allowed gravitino
mass are determined.Comment: 20 pages, 5 figure
CP Violation in Supersymmetry with Effective Minimal Flavour Violation
We analyze CP violation in supersymmetry with Effective Minimal Flavour
Violation, as recently proposed in arXiv:1011.0730. Unlike the case of standard
Minimal Flavour Violation, we show that all the phases allowed by the flavour
symmetry can be sizable without violating existing Electric Dipole Moment
constraints, thus solving the SUSY CP problem. The EDMs at one and two loops
are precisely analyzed as well as their correlations with the expected CP
asymmetries in B physics.Comment: 22 pages, 7 figures. v2: Discussion in section 2 extended,
conclusions unchanged. Matches published versio
Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)
Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM)
fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this
problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models,
which are GUTs with gravity mediated supersymmetry breaking and higher
dimensional operators. Introducing non-renormalizable terms in the super- and
K\"ahler potentials, we can obtain the correct SM fermion mass relations in the
SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations,
and in the SO(10) model. In the latter case the gauge symmetry is broken down
to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to
SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate
the realistic SM fermion mass relation in GUTs by considering the
high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde
Skyrmion Multi-Walls
Skyrmion walls are topologically-nontrivial solutions of the Skyrme system
which are periodic in two spatial directions. We report numerical
investigations which show that solutions representing parallel multi-walls
exist. The most stable configuration is that of the square -wall, which in
the limit becomes the cubically-symmetric Skyrme crystal. There is
also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur
ATLAS Z Excess in Minimal Supersymmetric Standard Model
Recently the ATLAS collaboration reported a 3 sigma excess in the search for
the events containing a dilepton pair from a Z boson and large missing
transverse energy. Although the excess is not sufficiently significant yet, it
is quite tempting to explain this excess by a well-motivated model beyond the
standard model. In this paper we study a possibility of the minimal
supersymmetric standard model (MSSM) for this excess. Especially, we focus on
the MSSM spectrum where the sfermions are heavier than the gauginos and
Higgsinos. We show that the excess can be explained by the reasonable MSSM mass
spectrum.Comment: 13 pages, 7 figures; published versio
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
Fair scans of the seesaw. Consequences for predictions on LFV processes
Usual analyses based on scans of the seesaw parameter-space can be biassed
since they do not cover in a fair way the complete parameter-space. More
precisely, we show that in the common "R-parametrization", many acceptable
R-matrices, compatible with the perturbativity of Yukawa couplings, are
normally disregarded from the beginning, which produces biasses in the results.
We give a straightforward procedure to scan the space of complex R-matrices in
a complete way, giving a very simple rule to incorporate the perturbativity
requirement as a condition for the entries of the R-matrix, something not
considered before. As a relevant application of this, we show that the extended
believe that BR(mu --> e, gamma) in supersymmetric seesaw models depends
strongly on the value of theta_13 is an "optical effect" produced by such
biassed scans, and does not hold after a careful analytical and numerical
study. When the complete scan is done, BR(mu --> e, gamma) gets very
insensitive to theta_13. Moreover, the values of the branching ratio are
typically larger than those quoted in the literature, due to the large number
of acceptable points in the parameter-space which were not considered before.
Including (unflavoured) leptogenesis does not introduce any further dependence
on theta_13, although decreases the typical value of BR(mu --> e, gamma).Comment: 22 pages, 5 figure
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
- …
