933 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV

    Get PDF
    The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Testing special relativity with geodetic VLBI

    Full text link
    Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity VV of 30 km/s, VLBI proves to be a handy tool to detect the subtle effects of the special and general relativity theory with a magnitude of (V/c)2(V/\textrm{c})^2. The theoretical correction for the second order terms reaches up to 300~ps, and it is implemented in the geodetic VLBI group delay model. The total contribution of the second order terms splits into two effects - the variation of the Earth scale, and the deflection of the apparent position of the radio source. The Robertson-Mansouri-Sexl (RMS) generalization of the Lorenz transformation is used for many modern tests of the special relativity theory. We develop an alteration of the RMS formalism to probe the Lorenz invariance with the geodetic VLBI data. The kinematic approach implies three parameters (as a function of the moving reference frame velocity) and the standard Einstein synchronisation. A generalised relativistic model of geodetic VLBI data includes all three parameters that could be estimated. Though, since the modern laboratory Michelson-Morley and Kennedy-Thorndike experiments are more accurate than VLBI technique, the presented equations may be used to test the VLBI group delay model itself.Comment: Proceedings of the IAG 2017 Scientific Meeting, Kobe, Japa

    A Review of One-Way and Two-Way Experiments to Test the Isotropy of the Speed of Light

    Full text link
    As we approach the 125th anniversary of the Michelson-Morley experiment in 2012, we review experiments that test the isotropy of the speed of light. Previous measurements are categorized into one-way (single-trip) and two-way (round-trip averaged or over closed paths) approaches and the level of experimental verification that these experiments provide is discussed. The isotropy of the speed of light is one of the postulates of the Special Theory of Relativity (STR) and, consequently, this phenomenon has been subject to considerable experimental scrutiny. Here, we tabulate significant experiments performed since 1881 and attempt to indicate a direction for future investigation.Comment: Updated Fig. 7 and references; Revised sections 3.2 and 4. Accepted in the Indian Journal of Physics on March 30, 201

    Meso scale discovery-based assays for the detection of aggregated huntingtin

    Get PDF
    Huntington’s disease (HD) is a monogenic neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat domain in the huntingtin (HTT) gene, leading to an expanded poly-glutamine (polyQ) stretch in the HTT protein. This mutant HTT (mHTT) protein is highly prone to intracellular aggregation, causing significant damage and cellular loss in the striatal, cortical, and other regions of the brain. Therefore, modulation of mHTT levels in these brain regions in order to reduce intracellular mHTT and aggregate levels represents a direct approach in the development of HD therapeutics. To this end, assays that can be used to detect changes in HTT levels in biological samples are invaluable tools to assess target engagement and guide dose selection in clinical trials. The Meso Scale Discovery (MSD) ELISA-based assay platform is a robust and sensitive method previously employed for the quantification of HTT. However, the currently available MSD assays for HTT are primarily detecting the monomeric soluble form of the protein, but not aggregated species. In this study, we describe the development of novel MSD assays preferentially detecting mHTT in an aggregated form. Recombinant monomeric HTT(1–97)-Q46, which forms aggregates in a time-dependent manner, was used to characterize the ability of each established assay to distinguish between HTT monomers and HTT in a higher assembly state. Further validation of these assays was performed using brain lysates from R6/2, zQ175 knock-in, and BACHD mouse models, to replicate a previously well-characterized age-dependent increase in brain aggregate signals, as well as a significant reduction of aggregate levels in the striatum following mHTT knockdown with a CAG-directed allele-specific zinc-finger repressor protein (ZFP). Lastly, size exclusion chromatography was used to separate and characterize HTT species from brain tissue lysates to demonstrate specificity of the assays for the fractions containing aggregated HTT. In summary, we demonstrate that the newly developed assays preferentially detect aggregated HTT with improved performance in comparison to previous assay technologies. These assays complement the existing MSD platform assays specific for soluble HTT monomers, allowing for a more comprehensive analysis of disease-relevant HTT species in preclinical models of HD

    Application and Validation of PFGE for Serovar Identification of Leptospira Clinical Isolates

    Get PDF
    Serovar identification of clinical isolates of Leptospira is generally not performed on a routine basis, yet the identity of an infecting serovar is valuable from both epidemiologic and public health standpoints. Only a small number of reference laboratories worldwide have the capability to perform the cross agglutinin absorption test (CAAT), the reference method for serovar identification. Pulsed-field gel electrophoresis (PFGE) is an alternative method to CAAT that facilitates rapid identification of leptospires to the serovar level. We employed PFGE to evaluate 175 isolates obtained from humans and animals submitted to the Centers for Disease Control and Prevention (CDC) between 1993 and 2007. PFGE patterns for each isolate were generated using the NotI restriction enzyme and compared to a reference database consisting of more than 200 reference strains. Of the 175 clinical isolates evaluated, 136 (78%) were identified to the serovar level by the database, and an additional 27 isolates (15%) have been identified as probable new serovars. The remaining isolates yet to be identified are either not represented in the database or require further study to determine whether or not they also represent new serovars. PFGE proved to be a useful tool for serovar identification of clinical isolates of known serovars from different geographic regions and a variety of different hosts and for recognizing potential new serovars
    corecore