18 research outputs found
Comparison of the pathogenesis of the highly passaged MCMV Smith strain with that of the low passaged MCMV HaNa1 isolate in BALB/c mice upon oronasal inoculation
Murine cytomegalovirus (MCMV) Smith strain is widely used in mouse models to study HCMV infections. Due to high serial passages, MCMV Smith has acquired genetic and biological changes. Therefore, a low passaged strain would be more relevant to develop mouse models. Here, the pathogenesis of an infection with MCMV Smith was compared with that of an infection with a low passaged Belgian MCMV isolate HaNa1 in BALB/c adult mice following oronasal inoculation with either a low (10(4) TCID50/mouse) or high (10(6) TCID50/mouse) inoculation dose. Both strains were mainly replicating in nasal mucosa and submandibular glands for one to two months. In nasal mucosa, MCMV was detected earlier and longer (1-49 days post inoculation (dpi)) and reached higher titers with the high inoculation dose compared to the low inoculation dose (14-35 dpi). In submandibular glands, a similar finding was observed (high dose: 7-49 dpi; low dose: 14-42 dpi). In lungs, both strains showed a restricted replication. In spleen, liver and kidneys, only the Smith strain established a productive infection. The infected cells were identified as olfactory neurons and sustentacular cells in olfactory epithelium, macrophages and dendritic cells in NALT, acinar cells in submandibular glands, and macrophages and epithelial cells in lungs for both strains. Antibody analysis demonstrated for both strains that IgG(2a) was the main detectable antibody subclass. Overall, our results show that significant phenotypic differences exist between the two strains. MCMV HaNa1 has been shown to be interesting for use in mouse models in order to get better insights for HCMV infections in immunocompetent humans
Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination
Combining Laboratory and Mathematical Models to Infer Mechanisms Underlying Kinetic Changes in Macrophage Susceptibility to an RNA Virus
Background: Macrophages are essential to innate immunity against many pathogens, but some pathogens also target macrophages as routes to infection. The Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an RNA virus that infects porcine alveolar macrophages (PAMs) causing devastating impact on global pig production. Identifying the cellular mechanisms that mediate PAM susceptibility to the virus is crucial for developing effective interventions. Previous evidence suggests that the scavenger receptor CD163 is essential for productive infection of PAMs with PRRSV. Here we use an integrative in-vitro-in-silico modelling approach to determine whether and how PAM susceptibility to PRRSV changes over time, to assess the role of CD163 expression on such changes, and to infer other potential causative mechanisms altering cell susceptibility.
Results: Our in-vitro experiment showed that PAM susceptibility to PRRSV changed considerably over incubation time. Moreover, an increasing proportion of PAMs apparently lacking CD163 were found susceptible to PRRSV at the later incubation stages, thus conflicting with current understanding that CD163 is essential for productive infection of PAMs with PRRSV. We developed process based dynamic mathematical models and fitted these to the data to assess alternative hypotheses regarding potential underlying mechanisms for the observed susceptibility and biomarker trends. The models informed by our data support the hypothesis that although CD163 may have enhanced cell susceptibility, it was not essential for productive infection in our study. Instead the models promote the existence of a reversible cellular state, such as macrophage polarization, mediated in a density dependent manner by autocrine factors, to be responsible for the observed kinetics in cell susceptibility.
Conclusions: Our dynamic model-inference approach provides strong support that PAM susceptibility to the PRRS virus is transient, reversible and can be mediated by compounds produced by the target cells themselves, and that these can render PAMs lacking the CD163 receptor susceptible to PRRSV. The results have implications for the development of therapeutics aiming to boost target cell resistance and prompt future investigation of dynamic changes in macrophage susceptibility to PRRSV and other viruses
