526 research outputs found
Enzymatic processing of protein-based fibers
Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.This work was financially supported by the National Natural Science Foundation of China (21274055,51373071, 31201134 and 31470509), the Program for New Century Excellent Talents in University (NCET-12-0883), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), the Jiangsu Provincial Natural Science Foundation of China (BK2012112), and the Fundamental Research Funds for the Central Universities (JUSRP51312B)
Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data
Thoracic myelopathy caused by ossification of ligamentum flavum of which fluorosis as an etiology factor
PURPOSE: To evaluate the clinical feature, operative method and prognosis of thoracic ossification of ligamentum flavum caused by skeletal fluorosis. METHODS: All the patients with thoracic OLF, who underwent surgical management in the authors' hospital from 1993–2003, were retrospectively studied. The diagnosis of skeletal fluorosis was made by the epidemic history, clinical symptoms, radiographic findings, and urinalysis. En bloc laminectomy decompression of the involved thoracic levels was performed in all cases. Cervical open door decompression or lumbar laminectomy decompression was performed if relevant stenosis existed. The neurological statuses were evaluated with the Japanese Orthopaedic Association (JOA) scoring system preoperatively and at the end point of follow up. Also, the recovery rate was calculated. RESULTS: 23 cases have been enrolled in this study. Imaging study findings showed all the cases have ossification of ligamentum flavum together with ossification of many other ligaments and interosseous membranes, i.e. interosseous membranes of the forearm in 18 of 23 (78.3%), of the leg in 14 of 23 (60.1%) and of the ribs in 11 of 23 (47.8%). Urinalysis showed markedly increased urinary fluoride in 14 of 23 patients (60.9%). All the patients were followed up from 12 months to 9 years and 3 months, with an average of 4 years and 5 months. The JOA score increased significantly at the end of follow up (P = 0.0001). The recovery rate was 51.83 ± 32.36%. Multiple regression analysis revealed that the preoperative JOA score was an important predictor of surgical outcome (p = 0.0022, r = 0.60628). ANOVA analysis showed that patients with acute onset or too long duration had worse surgical result (P = 0.0003). CONCLUSION: Fluorosis can cause ossification of thoracic ligamentum flavum, as well as other ligaments. En bloc laminectomy decompression was an effective method. Preoperative JOA score was the most important predictor of surgical outcome. Patients with acute onset or too long duration had worse surgical outcome
Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner
Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process
How Does Socioeconomic Development Affect COPD Mortality? An Age-Period-Cohort Analysis from a Recently Transitioned Population in China
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death, particularly in developing countries. Little is known about the effects of economic development on COPD mortality, although economic development may potentially have positive and negative influences over the life course on COPD. We took advantage of a unique population whose rapid and recent economic development is marked by changes at clearly delineated and identifiable time points, and where few women smoke, to examine the effect of macro-level events on COPD mortality. Methods: We used Poisson regression to decompose sex-specific COPD mortality rates in Hong Kong from 1981 to 2005 into the effects of age, period and cohort. Results: COPD mortality declined strongly over generations for people born from the early to mid 20th century, which was particularly evident for the first generation to grow up in a more economically developed environment for both sexes. Population wide COPD mortality decreased when air quality improved and increased with increasing air pollution. COPD mortality increased with age, particularly after menopause among women. Conclusions: Economic development may reduce vulnerability to COPD by reducing long-lasting insults to the respiratory system, such as infections, poor nutrition and indoor air pollution. However, some of these gains may be offset if economic development results in increasing air pollution or increasing smoking. © 2011 Chen et al.published_or_final_versio
Insecticidal Activity of Some Reducing Sugars Against the Sweet Potato Whitefly, Bemisia tabaci, Biotype B
The effects of 16 sugars (arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, inositol, lactose, maltose, mannitol (a sugar alcohol), mannose, melibiose, ribose, sorbitol, trehalose, and xylose) on sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) survival were determined using in vitro bioassays. Of these sugars, arabinose, mannose, ribose, and xylose were strongly inhibitory to both nymphal and adult survival. When 10% mannose was added to the nymphal diet, 10.5%, 1.0%, and 0% developed to the 2nd, 3rd, and 4th instars, respectively. When 10% arabinose was added, 10.8% and 0% of the nymphs molted to the 2nd and 3rd instars, respectively. Addition of 10% xylose or ribose completely terminated B. tabaci development, preventing the molt to the 2nd instar. With decreasing sugar concentrations the inhibitory effect was significantly reduced. In tests using adults, arabinose, galactose, inositol, lactose, maltose, mannitol, mannose, melibiose, ribose, sorbitol, trehalose, and xylose significantly reduced mean day survival. Mortality rates were highest when arabinose, mannitol, mannose, ribose, or xylose was added to the diet. Mean day survival was less than 2 days when adults were fed on diet containing 10% of any one of these five sugars. When lower concentrations of sugars were used there was a decrease in mortality. Mode of action studies revealed that toxicity was not due to the inhibition of alpha glucosidase (converts sucrose to glucose and fructose) and/or trehalulose synthase (converts sucrose to trehalulose) activity. The result of agarose gel electrophoresis of RT-PCR products of bacterial endosymbionts amplified from RNA isolated from whiteflies fed with 10% arabinose, mannose, or xylose indicated that the concentration of endosymbionts in mycetomes was not affected by the toxic sugars. Experiments in which B. tabaci were fed on diets that contained radio-labeled sucrose, methionine or inulin and one or none (control) of the highly toxic sugars showed that radioactivity (expressed in DPM) in the body, in excreted honeydew and/or carbon dioxide, was significantly reduced as compared to controls. Thus, it appears that the ability of insecticidal sugars to act as antifeedants is responsible for their toxicity to B. tabaci
Isolation and Characterization of Maize PMP3 Genes Involved in Salt Stress Tolerance
Plasma membrane protein 3 (PMP3), a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca2+. Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants
Temporal and Tissue Specific Regulation of RP-Associated Splicing Factor Genes PRPF3, PRPF31 and PRPC8—Implications in the Pathogenesis of RP
Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors.We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells.Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein
Nitric Oxide Destabilizes Pias3 and Regulates Sumoylation
Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide (NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32), a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and pathological processes
Three modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
- …
