32 research outputs found
Rapid Diagnosis of Smear-Negative Tuberculosis Using Immunology and Microbiology with Induced Sputum in HIV-Infected and Uninfected Individuals
Rationale and Objectives. Blood-based studies have demonstrated the potential of immunological assays to detect tuberculosis. However lung fluid sampling may prove superior as it enables simultaneous microbiological detection of mycobacteria to be performed. Until now this has only been possible using the expensive and invasive technique of broncho-alveolar lavage. We sought to evaluate an immunoassay using non-invasive induced-sputum to diagnose active tuberculosis. Methods and Results. Prospective cohort study of forty-two spontaneous sputum smear-negative or sputum non-producing adults under investigation for tuberculosis. CD4 lymphocytes specific to purified-protein-derivative of Mycobacterium tuberculosis actively synthesising interferon-gamma were measured by flow cytometry and final diagnosis compared to immunoassay using a cut-off of 0.5%. Sixteen subjects (38%) were HIV-infected (median CD4 count [range] = 332 cells/mu l [103748]). Thirty-eight (90%) were BCG-vaccinated. In 27 subjects diagnosed with active tuberculosis, the median [range] percentage of interferon-gamma synthetic CD4+ lymphocytes was 2.77% [0-23.93%] versus 0% [0-2.10%] in 15 negative for active infection (p<0.0001). Sensitivity and specificity of the immunoassay versus final diagnosis of active tuberculosis were 89% (24 of 27) and 80% (12 of 15) respectively. The 3 positive assays in the latter group occurred in subjects diagnosed with quiescent/latent tuberculosis. Assay performance was unaffected by HIV-status, BCG-vaccination or disease site. Combining this approach with traditional microbiological methods increased the diagnostic yield to 93% (25 of 27) alongside acid-fast bacilli smear and 96% (26 of 27) alongside tuberculosis culture. Conclusions. These data demonstrate for the first time that a rapid immunological assay to diagnose active tuberculosis can be performed successfully in combination with microbiological methods on a single induced-sputum sample
Neonatal cerebrovascular autoregulation.
Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes
Regional Climate Shifts Caused by Gradual Global Cooling in the Pliocene Epoch
The Earth\u27s climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 °C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks
Activity and metabolism of larval Atlantic cod (Gadus morhua) from Scotian Shelf and Newfoundland source populations
Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation
Patchiness in food resources drives fish abundances in emergent macrophytes under field and experimental conditions
The basic tenet of optimal foraging theory is that animals will select habitats that provide the greatest energy return (of food resources) per unit effort spent searching to optimize their fitness. Fish living in variable environments may use specific cues that indicate optimal feeding patches relative to poorer quality patches. To examine whether carp gudgeons (Hypseleotris spp.) preferentially select habitat patches based on food resource availability, we examined their habitat use in emergent macrophyte stands (the giant rush, Juncus ingens). We tested the hypothesis that carp gudgeons selected patches based upon food availability in a floodplain billabong and experimental billabongs. Under field conditions, fine-scale associations between carp gudgeons and giant rush demonstrated patch-specific differences in their prey (chironomid) density that were positively associated with fish abundance. Furthermore, the amount of biofilm within a patch was positively associated with the density and biomass of chironomids. Experimental evidence demonstrated that carp gudgeon patch selection was independent of stem density and based upon prey density. Carp gudgeons track their food resources through time, thus maximizing their feeding returns in both natural and experimental systems.Griffith Sciences, Griffith School of EnvironmentNo Full Tex
