399 research outputs found
Reporting of clinical trials: a review of research funders' guidelines
BACKGROUND: Randomised controlled trials (RCTs) represent the gold standard methodological design to evaluate the effectiveness of an intervention in humans but they are subject to bias, including study publication bias and outcome reporting bias. National and international organisations and charities give recommendations for good research practice in relation to RCTs but to date no review of these guidelines has been undertaken with respect to reporting bias. METHODS: National and international organisations and UK based charities listed on the Association for Medical Research Charities website were contacted in 2007; they were considered eligible for this review if they funded RCTs. Guidelines were obtained and assessed in relation to what was written about trial registration, protocol adherence and trial publication. It was also noted whether any monitoring against these guidelines was undertaken. This information was necessary to discover how much guidance researchers are given on the publication of results, in order to prevent study publication bias and outcome reporting bias. RESULTS: Seventeen organisations and 56 charities were eligible of 140 surveyed for this review, although there was no response from 12. Trial registration, protocol adherence, trial publication and monitoring against the guidelines were often explicitly discussed or implicitly referred too. However, only eleven of these organisations or charities mentioned the publication of negative as well as positive outcomes and just three of the organisations specifically stated that the statistical analysis plan should be strictly adhered to and all changes should be reported. CONCLUSION: Our review indicates that there is a need to provide more detailed guidance for those conducting and reporting clinical trials to help prevent the selective reporting of results. Statements found in the guidelines generally refer to publication bias rather than outcome reporting bias. Current guidelines need to be updated and include the statement that all primary and secondary outcomes prespecified in the protocol should be fully reported and should not be selected for inclusion in the final report based on their results
Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy
The performance of combined cooling, heating and power (CCHP) system is greatly affected by its operating strategy and design. In this paper, a new electric load following (NELF) strategy was developed. It is based on the alternation between absorption cooling and electric cooling according to the building energy requirements, for hybrid chiller based CCHP systems. A comparison of the new proposed strategy with the modified electric load following (MELF) and electric load following (ELF) strategies is performed. A multi-objective optimization approach based on genetic algorithm is carried out to predict the optimal capacity of CCHP systems. Performance criteria like primary energy consumption, annual total cost and carbon dioxide emission were considered as objective functions. The performances of these CCHP systems and operation strategies were examined and compared with the separated production (SP) system for a Mosque complex located in Algiers, Algeria. Results show that hybrid chiller CCHP based NELF strategy is the best choice, which can reduce the primary energy consumption by 34.45 GWh/year, annual total cost by 0.313 million €/year and carbon dioxide emission by 8.37 kton/year. Compared to the other configurations and strategies, the hybrid CCHP based NELF achieves better energetic, economic and environmental performance under the optimized conditions
In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies
Minimalism in Radiation Synthesis of Biomedical Functional Nanogels
A scalable, single-step, synthetic approach for the manufacture of
biocompatible, functionalized micro- and nanogels is presented. In particular,
poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and
nanogels were generated through e-beam irradiation of PVP aqueous solutions in
the presence of a primary amino-group-carrying monomer. Particles with
different hydrodynamic diameters and surface charge densities were obtained at
the variance of the irradiation conditions. Chemical structure was investigated by
different spectroscopic techniques. Fluorescent variants were generated through
fluorescein isothiocyanate attachment to the primary amino groups grafted to
PVP, to both quantify the available functional groups for bioconjugation and
follow nanogels localization in cell cultures. Finally, a model protein, bovine
serum albumin, was conjugated to the nanogels to demonstrate the attachment
of biologically relevant molecules for targeting purposes in drug delivery. The
described approach provides a novel strategy to fabricate biohybrid nanogels
with a very promising potential in nanomedicine
Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration
Computer simulations of heterologous immunity: Highlights of an interdisciplinary cooperation
The relationship between biological research and mathematical modeling is complex, critical, and vital. In this review, we summarize the results of the collaboration between two laboratories, exploring the interaction between mathematical modeling and wet-lab immunology. During this collaboration several aspects of the immune defence against viral infections were investigated, focusing primarily on the subject of heterologous immunity. In this manuscript, we emphasize the topics where computational simulations were applied in conjunction with experiments, such as immune attrition, the growing and shrinking of cross-reactive T cell repertoires following repeated infections, the short and long-term effects of cross-reactive immunological memory, and the factors influencing the appearance of new clonal specificities. For each topic, we describe how the mathematical model used was adapted to answer specific biological questions, and we discuss the hypotheses that were generated by simulations. Finally, we propose rules for testing hypotheses that emerge from model experimentation in the wet lab, and vice-versa
Lattice Radiation Therapy in clinical practice: A systematic review
Purpose: Lattice radiation therapy (LRT) is an innovative type of spatially fractionated radiation therapy. It aims to increase large tumors control probability by administering ablative doses without an increased toxicity. Considering the rising number of positive clinical experiences, the objective of this work is to evaluate LRT safety and efficacy. Method: Reports about LRT clinical experience were identified with a systematic review conducted on four different databases (namely, Medline, Embase, Scopus, and Cochrane Library) through the August 2022. Only LRT clinical reports published in English and with the access to the full manuscript text were considered as eligible. The 2020 update version PRISMA statement was followed. Results: Data extraction was performed from 12 eligible records encompassing 7 case reports, 1 case series, and 4 clinical studies. 81 patients (84 lesions) with a large lesion ranging from 63.2 cc to 3713.5 cc were subjected to exclusive, hybrid, and metabolism guided LRT. Excluding two very severe toxicity with a questionable relation with LRT, available clinical experience seem to confirm LRT safety. When a complete response was not achieved 3–6 months after LRT, a median lesion reduction approximately ≥50 % was registered. Conclusion: This systematic review appear to suggest LRT safety, especially for exclusive LRT. The very low level of evidence and the studies heterogeneity preclude drawing definitive conclusions on LRT efficacy, even though an interesting trend in terms of lesions reduction has been described
Recommended from our members
Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease.
International audienceRecently, several genome wide association studies (GWAS) have led to the discovery of 9 new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches.. We performed a genome wide haplotype association (GWHA) study in the EADI1 study (n=2,025 AD cases and 5,328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2,820 AD cases and 6,356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5,093 AD cases and 4,061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analysed (OR=1.68, 95% CI 1.43- 1.96; p=1.1x10-10). We finally searched for association between SNPs within the FRMD4A locus and Ab plasma concentrations in three independent non demented populations (n=2,579). We reported that polymorphisms were associated with plasma Ab42/Ab40 ratio (best signal, p=5.4x10-7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD
Functionalized poly(N-isopropylacrylamide)-based microgels in tumor targeting and drug delivery
Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels’ biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS
Avian Influenza in Wild Birds, Central Coast of Peru
To determine genotypes of avian influenza virus circulating among wild birds in South America, we collected and tested environmental fecal samples from birds along the coast of Peru, June 2006–December 2007. The 9 isolates recovered represented 4 low-pathogenicity avian influenza strains: subtypes H3N8, H4N5, H10N9, and H13N2
- …
