7,951 research outputs found

    Damping of thermoelastic structures

    Get PDF
    Report ascertains the effects of thermoelastic damping on the propagation of longitudinal waves in cylindrical rods. Review of results of wave propagation in unbounded elastic solids and in elastic cylinders precedes consideration of thermal modification of elastic properties

    Experimental data and model for the turbulent boundary layer on a convex, curved surface

    Get PDF
    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery

    Calibration of colour gradient bias in shear measurement using HST/CANDELS data

    Get PDF
    Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chromaticity for a broad band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colourgradient bias (CG bias) can be quantified with high accuracy using available multi-colour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1%, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data

    Transition from KPZ to Tilted Interface Critical Behavior in a Solvable Asymmetric Avalanche Model

    Full text link
    We use a discrete-time formulation to study the asymmetric avalanche process [Phys. Rev. Lett. vol. 87, 084301 (2001)] on a finite ring and obtain an exact expression for the average avalanche size of particles as a function of toppling probabilities depending on parameters μ\mu and α\alpha. By mapping the model below and above the critical line onto driven interface problems, we show how different regimes of avalanches may lead to different types of critical interface behavior characterized by either annealed or quenched disorders and obtain exactly the related critical exponents which violate a well-known scaling relation when α2\alpha \ne 2.Comment: 10 page

    Rotation-induced 3D vorticity in 4He superfluid films adsorbed on a porous glass

    Full text link
    Detailed study of torsional oscillator experiments under steady rotation up to 6.28 rad/sec is reported for a 4He superfluid monolayer film formed in 1 micrometer-pore diameter porous glass. We found a new dissipation peak with the height being in proportion to the rotation speed, which is located to the lower temperature than the vortex pair unbinding peak observed in the static state. We propose that 3D coreless vortices ("pore vortices") appear under rotation to explain this new peak. That is, the new peak originates from dissipation close to the pore vortex lines, where large superfluid velocity shifts the vortex pair unbinding dissipation to lower temperature. This explanation is confirmed by observation of nonlinear effects at high oscillation amplitudes.Comment: 4pages, 5figure

    Variations in Infant CYP2B6 Genotype Associated with the Need for Pharmacological Treatment for Neonatal Abstinence Syndrome in Infants of Methadone-Maintained Opioid-Dependent Mothers.

    Get PDF
    Background Neonatal abstinence syndrome (NAS) in infants of methadone-maintained opioid-dependent (MMOD) mothers cannot be predicted in individual cases. We investigated whether variation in infant genotype is associated with severity of NAS. Methods This is a pilot observational cohort study of 21 MMOD mothers and their newborns. Infant buccal swabs were obtained soon after delivery, together with a maternal blood sample for the determination of maternal plasma methadone concentration. Genomic variation in five opioid-related genes (ABCB1, COMT, CYP2B6, CYP2D6, and OPRM1) was ascertained from infant buccal swabs and related to need for pharmacological treatment of NAS. Results Out of 21 infants, 11 (52%) required treatment for NAS. Mothers of treated infants tended to have been prescribed higher doses of methadone, but plasma methadone concentrations did not differ between mothers of treated or untreated babies. Treated and untreated babies did not differ in terms of method of feeding. Treated infants were more likely to carry the normal (homozygous) allele at 516 and 785 regions of CYP2B6 gene (p = 0.015 and 0.023, respectively). There were no differences in any other genes between infants who did or did not require treatment for NAS. Conclusion Genomic variation in CYP2B6 may explain, at least in part, severity of NAS

    Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction

    Get PDF
    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63-0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited
    corecore