138 research outputs found

    Bioavailability of sediment-associated Cu and Zn to Daphnia magna

    Get PDF
    Exposures to mining-impacted, field-collected sediment (Clear Creek, CO, USA) contaminated with Cu (2.4 mg/g) and Zn (5.2 mg/g) were acutely toxic to juvenile Daphnia magna. Dissolved Cu and Zn in the overlying water (sediment + reference water) were at levels that could cause acute toxicity. To reduce dissolved metals below toxic levels, the sediment was repeatedly rinsed to remove any easily mobilized metals. Washing the sediment reduced dissolved Cu by 60% and Zn by 80%. D. magna exposed to washed sediment experienced higher survival (95%) compared to those exposed to the original sediment (0.45 μm) and unfiltered overlying water were statistically similar. Multiple regression analysis indicated that only dissolved Cu significantly contributed to mortality of D. magna whereas particulate Cu, particulate Zn, and dissolved Zn did not. Regression analysis on a combined dataset from all Clear Creek exposures (washed and unwashed), revealed a significant (p < 0.0001, r2 = 0.76) relationship between the concentration of dissolved copper in the overlying water and the mortality of exposed Daphnia, yielding an estimated LC50 of 26 μg/L dissolved copper (hardness approximately 140 mg/L). The results of this study indicate that if the sediment of Clear Creek was subjected to a resuspension event that there would be a significant efflux of metals from the sediment into the water column, resulting in potentially toxic levels in the water column. © 2006 Elsevier B.V. All rights reserved

    Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna

    Get PDF
    The presence of sediment particles in the gut indicated that Daphnia magna used in whole-sediment bioassays ingest sediment. If gut contents are not removed prior to whole-body tissue-burden analysis, then the bioavailability of any sediment-associated contaminants (e.g. metals) can be overestimated. Gut clearing patterns were determined for D. magna after exposure to both clean and metal-contaminated (Cu and Zn) field-collected sediments. D. magna exposed to reference sediment had fuller guts than those exposed to metal-contaminated sediment (95% versus 60% full). Neither reference- nor metal-exposed D. magna could clear their gut completely of sediment particles when held in clean water for 24 h. When Daphnia were transferred to clean water after exposure to metal-contaminated sediment, there was no significant decrease in gut-fullness (P > 0.05) even after 48 h of purging. By comparison, animals transferred to water containing 5 × 10 5 cells of algae (Pseudokircheriella subcapita) after exposure to contaminated sediment showed a significant drop in gut fullness from 56% immediately after exposure to 17% after 4 h of gut-clearance. Although gut fullness did not change significantly beyond 2 h of purging, data were much less variable after 8 h of gut-clearance than after 2 h or 4 h. The depuration of Cu was well described with a two-compartment first-order kinetic model (r 2 = 0.78, P < 0.0001) indicating that D. magna exposed to metal-contaminated sediment have one pool of Cu that is quickly depurated (0.2 h -1), and one that has been incorporated into the tissues (≪0.00001 h -1). Assuming tissue background of 48 μg/g, an exposed animal which has not been depurated or which has been purged with water alone would yield whole-body tissue Cu concentrations that are 5.6- and 4-fold higher, respectively, than that purged with algae + water (8 h). We recommend that D. magna used to estimate metal bioavailability from sediment be gut-cleared in the presence of algae for 8 h prior to determination of whole-body metal concentrations. © 2004 Elsevier B.V. All rights reserved

    Uptake and depuration of gold nanoparticles in Daphnia magna

    Get PDF
    This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.Peer reviewed: YesNRC publication: Ye

    A critical review of smaller state diplomacy

    Get PDF
    In The Peloponnesian War, Thucydides (1972: 402) highlights the effects of the general, overall weakness of smaller states vis-à-vis larger, more powerful ones in a key passage, where the Athenians remind the Melians that: “… since you know as well as we do that, as the world goes, right is only in question between equals in power. Meanwhile, the strong do what they can and the weak suffer what they must.” Concerns about the vulnerability of small, weak, isolated states have echoed throughout history: from Thucydides, through the review by Machiavelli (1985) of the risks of inviting great powers to intervene in domestic affairs, through 20th century US-led contemporary political science (Vital, 1971; Handel, 1990) and Commonwealth led scholarship (Commonwealth Secretariat, 1985). In the context of 20th century ‘Balkanization’, the small state could also prove unstable, even hostile and uncooperative, a situation tempting enough to invite the intrusion of more powerful neighbours: a combination, according to Brzezinski (1997: 123-124) of a power vacuum and a corollary power suction2: in the outcome, if the small state is ‘absorbed’, it would be its fault, and its destiny, in the grand scheme of things. In an excellent review of small states in the context of the global politics of development, Payne (2004: 623, 634) concludes that “vulnerabilities rather than opportunities are the most striking consequence of smallness”. It has been recently claimed that, since they cannot defend or represent themselves adequately, small states “lack real independence, which makes them suboptimal participants in the international system” (Hagalin, 2005: 1). There is however, a less notable and acknowledged but more extraordinary strand of argumentation that considers ‘the power of powerlessness’, and the ability of small states to exploit their smaller size in a variety of ways in order to achieve their intended, even if unlikely, policy outcomes. The pursuance of smaller state goals becomes paradoxically acceptable and achievable precisely because such smaller states do not have the power to leverage disputants or pursue their own agenda. A case in point concerns the smallest state of all, the Vatican, whose powers are both unique and ambiguous, but certainly not insignificant (The Economist, 2007). Smaller states have “punched above their weight” (e.g. Edis, 1991); and, intermittently, political scientists confront their “amazing intractability” (e.g. Suhrke, 1973: 508). Henry Kissinger (1982: 172) referred to this stance, with obvious contempt, as “the tyranny of the weak”3. This paper seeks a safe passage through these two, equally reductionist, propositions. It deliberately focuses first on a comparative case analysis of two, distinct ‘small state-big state’ contests drawn from the 1970s, seeking to infer and tease out the conditions that enable smaller ‘Lilliputian’ states (whether often or rarely) to beat their respective Goliaths. The discussion is then taken forward to examine whether similar tactics can work in relation to contemporary concerns with environmental vulnerability, with a focus on two other, small island states. Before that, the semiotics of ‘the small state’ need to be explored, since they are suggestive of the perceptions and expectations that are harboured by decision makers at home and abroad and which tend towards the self-fulfilling prophecy.peer-reviewe

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis

    The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3' untranslated regions.

    Get PDF
    BACKGROUND: A significant portion (about 8% in the human genome) of mammalian mRNA sequences contains AU (Adenine and Uracil) rich elements or AREs at their 3' untranslated regions (UTR). These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUU)(n)A). The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats. RESULTS: Interspersed in the human genome, Alu repeats occupy 5% of the 3' UTR of mRNA sequences. Alu has poly-adenine (poly-A) regions at its end, which lead to poly-thymine (poly-T) regions at the end of its complementary Alu. It has been found that AREs are present at the poly-T regions. From the 3' UTR of the NCBI's reference mRNA sequence database, we found nearly 40% (38.5%) of ARE (Class I) were associated with Alu sequences (Table 1) within one mismatch allowance in ARE sequences. Other ARE classes had statistically significant associations as well. This is far from a random occurrence given their limited quantity. At each ARE class, random distribution was simulated 1,000 times, and it was shown that there is a special relationship between ARE patterns and the Alu repeats. CONCLUSION: AREs are mediating sequence elements affecting the stabilization or degradation of mRNA at the 3' untranslated regions. However, AREs' mechanism and origins are unknown. We report that Alu is a source of ARE. We found that half of the longest AREs were derived from the poly-T regions of the complementary Alu

    Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna

    Get PDF
    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q10 value, responded non-linearly with C:P, with Q10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality

    Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies

    Get PDF
    Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B−/− mice. While Pds5A−/− and Pds5B−/− mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A−/− or Pds5B−/− mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS
    corecore