326 research outputs found

    Enhancement of Tc in the Superconductor-Insulator Phase Transition on Scale-Free Networks

    Full text link
    A road map to understand the relation between the onset of the superconducting state with the particular optimum heterogeneity in granular superconductors is to study a Random Tranverse Ising Model on complex networks with a scale-free degree distribution regularized by and exponential cutoff p(k) \propto k^{-\gamma}\exp[-k/\xi]. In this paper we characterize in detail the phase diagram of this model and its critical indices both on annealed and quenched networks. To uncover the phase diagram of the model we use the tools of heterogeneous mean-field calculations for the annealed networks and the most advanced techniques of quantum cavity methods for the quenched networks. The phase diagram of the dynamical process depends on the temperature T, the coupling constant J and on the value of the branching ratio / where k is the degree of the nodes in the network. For fixed value of the coupling the critical temperature increases linearly with the branching ration which diverges with the increasing cutoff value \xi or value of the \gamma exponent \gamma< 3. This result suggests that the fractal disorder of the superconducting material can be responsible for an enhancement of the superconducting critical temperature. At low temperature and low couplings T<<1 and J<<1, instead, we observe a different behavior for annealed and quenched networks. In the annealed networks there is no phase transition at zero temperature while on quenched network we observe a Griffith phase dominated by extremely rare events and a phase transition at zero temperature. The Griffiths critical region, nevertheless, is decreasing in size with increasing value of the cutoff \xi of the degree distribution for values of the \gamma exponents \gamma< 3.Comment: (17 pages, 3 figures

    Entropy measures for complex networks: Toward an information theory of complex topologies

    Full text link
    The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this paper we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of networks through maximum-entropy arguments and will contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure

    Number of loops of size h in growing scale-free networks

    Full text link
    The hierarchical structure of scale-free networks has been investigated focusing on the scaling of the number Nh(t)N_h(t) of loops of size h as a function of the system size. In particular we have found the analytic expression for the scaling of Nh(t)N_h(t) in the Barab\'asi-Albert (BA) scale-free network. We have performed numerical simulations on the scaling law for Nh(t)N_h(t) in the BA network and in other growing scale free networks, such as the bosonic network (BN) and the aging nodes (AN) network. We show that in the bosonic network and in the aging node network the phase transitions in the topology of the network are accompained by a change in the scaling of the number of loops with the system size.Comment: 4 pages, 3 figure

    Critical fluctuations in spatial complex networks

    Full text link
    An anomalous mean-field solution is known to capture the non trivial phase diagram of the Ising model in annealed complex networks. Nevertheless the critical fluctuations in random complex networks remain mean-field. Here we show that a break-down of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal in particular the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.Comment: (4 pages, 2 figures

    Dynamical and bursty interactions in social networks

    Full text link
    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales, in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group, or vice-versa. Different distributions of contact times and inter-contact times between individuals are obtained by considering transition probabilities with memory effects, i.e. the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change of state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended, and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information, or spreading of diseases

    Percolation transition and distribution of connected components in generalized random network ensembles

    Full text link
    In this work, we study the percolation transition and large deviation properties of generalized canonical network ensembles. This new type of random networks might have a very rich complex structure, including high heterogeneous degree sequences, non-trivial community structure or specific spatial dependence of the link probability for networks embedded in a metric space. We find the cluster distribution of the networks in these ensembles by mapping the problem to a fully connected Potts model with heterogeneous couplings. We show that the nature of the Potts model phase transition, linked to the birth of a giant component, has a crossover from second to first order when the number of critical colors qc=2q_c = 2 in all the networks under study. These results shed light on the properties of dynamical processes defined on these network ensembles.Comment: 27 pages, 15 figure

    The entropy of randomized network ensembles

    Full text link
    Randomized network ensembles are the null models of real networks and are extensivelly used to compare a real system to a null hypothesis. In this paper we study network ensembles with the same degree distribution, the same degree-correlations or the same community structure of any given real network. We characterize these randomized network ensembles by their entropy, i.e. the normalized logarithm of the total number of networks which are part of these ensembles. We estimate the entropy of randomized ensembles starting from a large set of real directed and undirected networks. We propose entropy as an indicator to assess the role of each structural feature in a given real network.We observe that the ensembles with fixed scale-free degree distribution have smaller entropy than the ensembles with homogeneous degree distribution indicating a higher level of order in scale-free networks.Comment: (6 pages,1 figure,2 tables

    Modeling microevolution in a changing environment: The evolving quasispecies and the Diluted Champion Process

    Full text link
    Several pathogens use evolvability as a survival strategy against acquired immunity of the host. Despite their high variability in time, some of them exhibit quite low variability within the population at any given time, a somehow paradoxical behavior often called the evolving quasispecies. In this paper we introduce a simplified model of an evolving viral population in which the effects of the acquired immunity of the host are represented by the decrease of the fitness of the corresponding viral strains, depending on the frequency of the strain in the viral population. The model exhibits evolving quasispecies behavior in a certain range of its parameters, ans suggests how punctuated evolution can be induced by a simple feedback mechanism.Comment: 15 pages, 12 figures. Figures redrawn, some additional clarifications in the text. To appear in Journal of Statistical Mechanics: Theory and Experimen

    Phase diagram of the Bose-Hubbard Model on Complex Networks

    Full text link
    Critical phenomena can show unusual phase diagrams when defined in complex network topologies. The case of classical phase transitions such as the classical Ising model and the percolation transition has been studied extensively in the last decade. Here we show that the phase diagram of the Bose-Hubbard model, an exclusively quantum mechanical phase transition, also changes significantly when defined on random scale-free networks. We present a mean-field calculation of the model in annealed networks and we show that when the second moment of the average degree diverges the Mott-insulator phase disappears in the thermodynamic limit. Moreover we study the model on quenched networks and we show that the Mott-insulator phase disappears in the thermodynamic limit as long as the maximal eigenvalue of the adjacency matrix diverges. Finally we study the phase diagram of the model on Apollonian scale-free networks that can be embedded in 2 dimensions showing the extension of the results also to this case.Comment: (6 pages, 4 figures
    corecore