7,025 research outputs found
Blood Pressure and Cognitive Decline Over 8 Years in Middle-Aged and Older Black and White Americans
Although the association between high blood pressure (BP), particularly in midlife, and late-life dementia is known, less is known about variations by race and sex. In a prospective national study of 22 164 blacks and whites ≥45 years without baseline cognitive impairment or stroke from the REGARDS cohort study (Reasons for Geographic and Racial Differences in Stroke), enrolled 2003 to 2007 and followed through September 2015, we measured changes in cognition associated with baseline systolic and diastolic BP (SBP and DBP), as well as pulse pressure (PP) and mean arterial pressure, and we tested whether age, race, and sex modified the effects. Outcomes were global cognition (Six-Item Screener; primary outcome), new learning (Word List Learning), verbal memory (Word List Delayed Recall), and executive function (Animal Fluency Test). Median follow-up was 8.1 years. Significantly faster declines in global cognition were associated with higher SBP, lower DBP, and higher PP with increasing age ( P<0.001 for age×SBP×follow-up-time, age×DBP×follow-up-time, and age×PP×follow-up-time interaction). Declines in global cognition were not associated with mean arterial pressure after adjusting for PP. Blacks, compared with whites, had faster declines in global cognition associated with SBP ( P=0.02) and mean arterial pressure ( P=0.04). Men, compared with women, had faster declines in new learning associated with SBP ( P=0.04). BP was not associated with decline of verbal memory and executive function, after controlling for the effect of age on cognitive trajectories. Significantly faster declines in global cognition over 8 years were associated with higher SBP, lower DBP, and higher PP with increasing age. SBP-related cognitive declines were greater in blacks and men
Synthesis, in vitro, and in vivo biological evaluation and molecular docking simulations of chiral alcohol and ether derivatives of the 1,5-diarylpyrrole scaffold as novel anti-inflammatory and analgesic agents.
Following our previous research on anti-inflammatory drugs (NSAIDs), we report here the synthesis of chiral 1,5-diarylpyrroles derivatives that were characterized for their in vitro inhibitory effects toward cyclooxygenase (COX) isozymes. Analysis of enzymatic affinity and COX-2 selectivity led us to the selection of one compound (+/-)-10b that was further tested in vitro in the human whole blood (HWB) and in vivo for its anti-inflammatory activity in mice. The affinity data have been rationalized through docking simulations
Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers
The aim of this study was to demonstrate the
relationship between the structural and corrosion properties
of an ISO 5832-9 biomedical alloy modified with titanium
dioxide (TiO2) layers. These layers were obtained via the
sol–gel method by acid-catalyzed hydrolysis of titanium
isopropoxide in isopropanol solution. To obtain TiO2 layers
with different structural properties, the coated samples
were annealed at temperatures of 200, 300, 400, 450, 500,
600 and 800 C for 2 h. For all the prepared samples,
accelerated corrosion measurements were performed in
Tyrode’s physiological solution using electrochemical
methods. The most important corrosion parameters were
determined: corrosion potential, polarization resistance,
corrosion rate, breakdown and repassivation potentials.
Corrosion damage was analyzed using scanning electron
microscopy. Structural analysis was carried out for selected
TiO2 coatings annealed at 200, 400, 600 and 800 C. In
addition, the morphology, chemical composition, crystallinity,
thickness and density of the deposited TiO2 layers
were determined using suitable electron and X-ray measurement
methods. It was shown that the structure and
character of interactions between substrate and deposited
TiO2 layers depended on annealing temperature. All the
obtained TiO2 coatings exhibit anticorrosion properties, but
these properties are related to the crystalline structure and
character of substrate–layer interaction. From the point of
view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to
be those obtained at 400 C.This study was supported by Grant No. N N507
501339 of the National Science Centre. The authors wish to express
their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy
Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles
In this note, we consider possible constraints from production on
the gauge bosons of theories with an extended strong interaction sector such as
axigluons or flavour universal colorons. Such constraints are found to be
competitive with those obtained from the dijet data. The current
data from the Tevatron rule out axigluon masses () up to 900 GeV and 850
GeV at 2 and 4 levels respectively. For the case of flavour
universal colorons the data rule out a mass () below 800 GeV (780 GeV) at
the level and also the mass range between 900 GeV to 2.1 TeV at
2 level, for , where is the mixing angle. For
on the other hand, the excluded range is m_C \lsim 950 (920)
GeV and m_C \gsim 1.02 (1.15 \lsim m_C \lsim 1.8) TeV at () level. We point out that for higher axigluon/coloron masses, even for
the dijet channel, the limits on the coloron mass, for , may be
different than those for the axigluon. We also compute the expected
forward-backward asymmetry for the case of the axigluons which would allow it
to be discriminated against the SM as also the colorons. We further find that
at the LHC, the signal should be visible in the invariant mass
spectrum for a wide range of axigluon and coloron masses that are still
allowed. We point out how top polarisation may be used to further discriminate
the axigluon and coloron case from the SM as well as from each other.Comment: 15 pages, uses LaTex, six figures. To appear in Physics Letters B.
Reference to and discussion on the forward-backward asymmetry expected even
in the SM, adde
Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1
The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development
The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing
Kinetoplastid parasites—trypanosomes and leishmanias—infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition
Dijet resonances, widths and all that
The search for heavy resonances in the dijet channel is part of the on-going
physics programme, both at the Tevatron and at the LHC. Lower limits have been
placed on the masses of dijet resonances predicted in a wide variety of models.
However, across experiments, the search strategy assumes that the effect of the
new particles is well-approximated by on-shell production and subsequent decay
into a pair of jets. We examine the impact of off-shell effects on such
searches, particularly for strongly interacting resonances.Comment: Version published in JHE
The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome
The Quantity Theory of Money is Valid. The New Keynesians are Wrong!
We test the quantity theory of money (QTM) using a novel approach and a large new sample. We do not follow the usual approach of first differentiating the logarithm of the Cambridge equation to obtain an equation relating the growth rate of real GDP, the growth rate of money and inflation. These variables must then again be ‘integrated’ by averaging in order to obtain stable relationships. Instead we suggest a much simpler procedure for testing directly the stability of the coefficient of the Cambridge equation. For 125 countries and post-war data we find the coefficient to be surprisingly stable. We do not select for high inflation episodes as was done in most empirical studies; inflation rates do not even appear in our data set.
Much work supporting the QTM has been done by economic historians and at the University of Chicago by Milton Friedman and his associates. The QTM was a foundation stone of the monetarist revolution. Subsequently belief in it waned. The currently dominant New Keynesian School, implicitly or explicitly denies the validity of the QTM. We survey this history and argue that the QTM is valid and New Keynesians are wrong
- …
