1,465 research outputs found
Relationship between the quark condensate and low-energy Pi-Pi observables beyond O(p^4)
The two-flavor Gell-Mann-Oakes-Renner ratio is expressed in terms of
low-energy pi-pi observables including the O(p^6) double chiral logarithms,
computed in Generalized Chiral Perturbation Theory. It is found that their
contribution is important and tends to compensate the one from the single
chiral logarithms.Comment: contribution to LNF Spring School, Frascati, 15-20 May, 200
Chiral order and fluctuations in multi-flavour QCD
Multi-flavour (N_f>=3) Chiral Perturbation Theory (ChPT) may exhibit
instabilities due to vacuum fluctuations of sea q-bar q pairs. Keeping the
fluctuations small would require a very precise fine-tuning of the low-energy
constants L_4 and L_6 to L_4[crit](M_rho) = - 0.51 * 10^(-3), and
L_6[crit](M_rho) = - 0.26 * 10^(-3). A small deviation from these critical
values -- like the one suggested by the phenomenology of OZI-rule violation in
the scalar channel -- is amplified by huge numerical factors inducing large
effects of vacuum fluctuations. This would lead in particular to a strong
N_f-dependence of chiral symmetry breaking and a suppression of multi-flavour
chiral order parameters. A simple resummation is shown to cure the instability
of N_f>=3 ChPT, but it modifies the standard expressions of some O(p^2) and
O(p^4) low-energy parameters in terms of observables. On the other hand, for
r=m_s/m > 15, the two-flavour condensate is not suppressed, due to the
contribution induced by massive vacuum s-bar s pairs. Thanks to the latter, the
standard two-flavour ChPT is protected from multi-flavour instabilities and
could provide a well-defined expansion scheme in powers of non-strange quark
masses.Comment: Published versio
Operation of Quantum Cellular Automaton cells with more than two electrons
We present evidence that operation of QCA (Quantum Cellular Automaton) cells
with four dots is possible with an occupancy of 4N+2 electrons per cell (N
being an integer). We show that interaction between cells can be described in
terms of a revised formula for cell polarization, which is based only on the
difference between diagonal occupancies. We validate our conjectures with full
quantum simulations of QCA cells for a number of electrons varying from 2 to 6,
using the Configuration-Interaction method.Comment: 4 pages, 4 figures included, submitted to AP
Paramagnetic effect of light quark loops on Chiral Symmetry Breaking
We argue that light quark loops produce a paramagnetic suppression of
infrared-sensitive order parameters such as , as the number N_f of light
fermions increases. The possibly strong dependence of on N_f is related to
the observed Zweig rule violation in the scalar channel. Presuming the
existence of a chiral phase transition for not too large N_f, we discuss the
phenomenological possibilities of separately determining the two-flavour and
three-flavour condensates and the quark mass ratio r=2m_s/(m_u+m_d). The issue
is closely related to the interpretation of new forthcoming precise pi-pi data
at low energy.Comment: 15 pages, Latex, using JHEP.cls (included), 1 PS figur
Subleading contributions to the three-nucleon contact interaction
We obtain a minimal form of the two-derivative three-nucleon contact
Lagrangian, by imposing all constraints deriving from discrete symmetries,
Fierz identities and Poincare' covariance. The resulting interaction, depending
on 13 unknown low-energy constants, leads to a three-nucleon potential which we
give in a local form in configuration space. We also consider the leading
(no-derivative) four-nucleon interaction and show that there exists only one
independent operator.Comment: 11 pages. Three more operators found after correcting some mistaken
Fierz relation
Effect of three-nucleon interaction in p-3He elastic scattering
We present a detailed study of the effect of different three-nucleon
interaction models in p-3He elastic scattering at low energies. In particular,
two models have been considered: one derived from effective field theory at
next-to-next-to-leading order and one derived from a more phenomenological
point of view -- the so-called Illinois model. The four-nucleon scattering
observables are calculated using the Kohn variational principle and the
hyperspherical harmonics technique and the results are compared with available
experimental data. We have found that the inclusion of either one of the other
force model improves the agreement with the experimental data, in particular
for the proton vector analyzing power.Comment: 4 pages, 3 figure
The two-nucleon electromagnetic charge operator in chiral effective field theory (EFT) up to one loop
The electromagnetic charge operator in a two-nucleon system is derived in
chiral effective field theory (EFT) up to order (or N4LO), where
denotes the low-momentum scale and is the electric charge. The specific
form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and
two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for
the non-static terms in the corresponding potentials. We show that different
prescriptions lead to unitarily equivalent potentials and accompanying charge
operators. Thus, provided a consistent set is adopted, predictions for physical
observables will remain unaffected by the non-uniqueness associated with these
off-the-energy-shell effects.Comment: 16 pages, 10 figure
Bakamjian-Thomas mass operator for the few-nucleon system from chiral dynamics
We present an exploratory study consisting in the formulation of a
relativistic quantum mechanics to describe the few-nucleon system at low
energy, starting from the quantum field theoretical chiral Lagrangian involving
pions and nucleons. To this aim we construct a Bakamjian-Thomas mass operator
and perform a truncation of the Fock space which respects at each stage the
relativistic covariance. Such truncation is justified, at sufficiently low
energy, in the framework of a systematic chiral expansion. As an illustration
we discuss the bound state observables and low-energy phaseshifts of the
nucleon-nucleon and pion-nucleon scattering at the leading order of our scheme.Comment: 17 pages, 10 figures. Revised formulation, matches the journal
versio
Effect of three nucleon forces in p-3He scattering
The effect of the inclusion of different models of three nucleon (3N) forces
in p-3He elastic scattering at low energies is studied. Two models have been
considered: one derived from effective field theory at next-to-next-to-leading
order and one derived from a more phenomenological point of view -- the
so-called Illinois model. The four nucleon scattering observables are
calculated using the Kohn variational principle and the hyperspherical harmonic
technique and the results are compared with available experimental data. We
have found that with the inclusion of both 3N force models the agreement with
the experimental data is improved, in particular for the proton vector
analyzing power A_y.Comment: 8 pages, 4 figures, talk presented at the 20th International IUPAP
Conference on Few-Body Problems in Physics, 20 - 25 August, 2012, Fukuoka,
Japa
- …
