4 research outputs found
Probing Behavior of Apterous and Alate Morphs of two Potato—Colonizing Aphids
Secondary host plant colonization by aphids involves alate and apterous morphs to spread in the population at a large scale by flying or, at a finer one, by walking. Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae) and Myzus persicae Sulzer (Hemiptera: Aphididae) are two polyphagous aphids that cause serious losses on many crops, particularly on potato, Solanum tuberosum L. (Solanales: Solanaceae). When settlement of virginoparous alate aphids occurs, apterous individuals are produced and spread within the potato field. As these two potato colonizers originate from different areas and show different body length, this study compared probing behaviors of virginoparous alate and apterous M. persicae and M. euphorbiae on one of their secondary host plants, Solanum tuberosum. Non—choice bioassays and electrical penetration graph (EPG) recordings were performed. Most M. euphorbiae of the two morphs rapidly accepted potato plants and exhibited long duration of probing, phloem sap salivation, and ingestion phases. In contrast, at the end of the experiment, most alates of M. persicae left the potato leaflet after brief gustative probes. Moreover, EPG experiments showed that the main difference between both morphs of the two species concerned the xylem ingestion parameter. Differences between species were also reported, such as an increased total duration of probing in both morphs and enhanced phloem ingestion duration in apterous M. euphorbiae. All the differences highlighted in this study are discussed according to the variations observed in aphid body size and to their historical association with Solanum species
Evidence of Potato virus Y Spread through Post-Emergence Management Practices in Commercial Potato Fields
Avoidance, escape and microstructural adaptations of the tea green leafhopper to water droplets
Potato virus Y: Control, Management and Seed Certification Programmes
The management of Potato virus Y (PVY) in potato crops poses a continual challenge due to the non-persistent mode of transmission of the virus and the propagation of seed potato tubers over several generations in the field. While PVY-resistant cultivars remain the most efficient way to protect potato crops against PVY, a vast majority of cultivars grown do not display significant resistance to PVY. Due to the short time period for PVY transmission by non-colonising aphid vectors, efficient control of PVY relies on preventing aphids landing on a crop and on adopting precautionary measures by ensuring that crops are grown in areas of low aphid and low virus pressure and limiting field generation. Prophylactic measures such as roguing and early haulm destruction limit PVY spread but are not efficient alone. Among all existing control methods, spraying potato crops with mineral oils can offer significant protection against PVY spread, but their efficacy do vary in field conditions. The combination of several control methods such as mineral oil treatments, crop borders, intercropping, straw mulching or insecticide treatments can increase protection. These emphasise the importance of controlling virus through appropriate monitoring methods and crop management enforced by seed certification schemes through the use of ‘clean’ input seed and, when possible, the segregation of seed and ware crops to minimise the risk of virus transmission. This chapter presents and discusses the most widely used techniques of control and management of PVY, their effectiveness and their mode of action. This chapter also presents the history, objectives and principles of seed potato certification schemes and their role in minimising the spread of viruses within potato crops worldwide
