12 research outputs found

    Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells

    No full text
    The Beckwith–Wiedemann syndrome (BWS) is a growth disorder for which an increased frequency of monozygotic (MZ) twinning has been reported. With few exceptions, these twins are discordant for BWS and for females. Here, we describe the molecular and phenotypic analysis of 12 BWS twins and a triplet; seven twins are MZ, monochorionic and diamniotic, three twins are MZ, dichorionic and diamniotic and three twins are dizygotic. Twelve twins are female. In the majority of the twin pairs (11 of 13), the defect on chromosome 11p15 was hypomethylation of the paternal allele of DMR2. In 5 of 10 twins, there was additional hypomethylation of imprinted loci; in most cases, the loci affected were maternally methylated, but in two cases, hypomethylation of the paternally methylated DLK1 and H19 DMRs was detected, a novel finding in BWS. In buccal swabs of the MZ twins who share a placenta, the defect was present only in the affected twin; comparable hypomethylation in lymphocytes was detected in both the twins. The level of hypomethylation reached levels below 25%. The exchange of blood cells through vascular connections cannot fully explain the degree of hypomethylation found in the blood cell of the non-affected twin. We propose an additional mechanism through which sharing of aberrant methylation patterns in discordant twins, limited to blood cells, might occur. In a BWS-discordant MZ triplet, an intermediate level of demethylation was found in one of the non-affected sibs; this child showed mild signs of BWS. This finding supports the theory that a methylation error proceeds and possibly triggers the twinning proces

    Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature.

    No full text
    Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases

    Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement

    No full text
    Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases

    A mitochondrial basis for Huntington’s disease: therapeutic prospects

    No full text

    Die in den Futtermitteln enthaltenen Nährstoffe

    No full text
    corecore