189 research outputs found
The Worldvolume Action of Kink Solitons in AdS Spacetime
A formalism is presented for computing the higher-order corrections to the
worldvolume action of co-dimension one solitons. By modifying its potential, an
explicit "kink" solution of a real scalar field in AdS spacetime is found. The
formalism is then applied to explicitly compute the kink worldvolume action to
quadratic order in two expansion parameters--associated with the hypersurface
fluctuation length and the radius of AdS spacetime respectively. Two
alternative methods are given for doing this. The results are expressed in
terms of the trace of the extrinsic curvature and the intrinsic scalar
curvature. In addition to conformal Galileon interactions, we find a
non-Galileon term which is never sub-dominant. This method can be extended to
any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde
Subtracted Geometry From Harrison Transformations
We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity
carrying three magnetic charges and one electric charge. We show that its
subtracted geometry is obtained by applying a specific SO(4,4) Harrison
transformation on the black hole. As previously noted, the resulting subtracted
geometry is a solution of the N=2 S=T=U supergravity.Comment: 11 pages main text; total 24 pages; Latex file; v2 typos corrected +
ref added; v3 results significantly strengthened, changes in section 3.1 and
appendix C, version to appear in JHE
Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in
the vacuum of strongly-coupled conformal field theories in various dimensions,
and determine the resulting stochastic fluctuations of the quark trajectory.
From the perspective of an inertial observer, these are quantum fluctuations
induced by the gluonic radiation emitted by the accelerated quark. From the
point of view of the quark itself, they originate from the thermal medium
predicted by the Unruh effect. We scrutinize the relation between these two
descriptions in the gravity side of the correspondence, and show in particular
that upon transforming the conformal field theory from Rindler space to the
open Einstein universe, the acceleration horizon disappears from the boundary
theory but is preserved in the bulk. This transformation allows us to directly
connect our calculation of radiation-induced fluctuations in vacuum with the
analysis by de Boer et al. of the Brownian motion of a quark that is on average
static within a thermal medium. Combining this same bulk transformation with
previous results of Emparan, we are also able to compute the stress-energy
tensor of the Unruh thermal medium.Comment: 1+31 pages; v2: reference adde
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets
Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior
<p>Abstract</p> <p>Background</p> <p>Information on the biology of metastasis development in salivary gland tumors is scarce. Since angiogenesis seems associated with this phenomenon in other tumors, we sought to compare salivary gland tumors with diverse metastatic behavior in order to improve the knowledge and management of these lesions.</p> <p>Methods</p> <p>Samples from the most important salivary gland tumors were segregated according to its metastatic behavior and submitted to routine immunohistochemistry to identify vessels positive for CD105 expression. Frequency of positive cases and intratumoral microvessel density (IMD) was compared among the group of lesions.</p> <p>Results</p> <p>CD105 positive vessels were absent in normal salivary gland tissue, were rare in pleomorphic adenomas and adenoid cystic carcinomas (ACC), more common in polymorphous low-grade adenocarcinomas and highest in mucoepidermoid carcinomas. Only ACC with such feature were metastatic. IMD was higher in malignant rather than benign tumors.</p> <p>Conclusion</p> <p>Immunostaining of CD105 in salivary gland tumors implies participation of angiogenesis in the development of malignant lesions, as well as some role for myoepithelial cells in the control of new vessel formation. In addition, suggest that ACC with positive CD105 vessels are at higher risk for metastasis.</p
Non-extremal black holes of N=2, d=4 supergravity
We propose a generic recipe for deforming extremal black holes into
non-extremal black holes and we use it to find and study the non-extremal
black-hole solutions of several N=2,d=4 supergravity models (SL(2,R)/U(1), CPn
and STU with four charges). In all the cases considered, the non-extremal
family of solutions smoothly interpolates between all the different extremal
limits, supersymmetric and not supersymmetric. This fact can be used to find
explicitly extremal non-supersymmetric solutions in the cases in which the
attractor mechanism does not completely fix the values of the scalars on the
event horizon and they still depend on the boundary conditions at spatial
infinity.
We compare (supersymmetry) Bogomol'nyi bounds with extremality bounds, we
find the first-order flow equations for the non-extremal solutions and the
corresponding superpotential, which gives in the different extremal limits
different superpotentials for extremal black holes. We also compute the
"entropies" (areas) of the inner (Cauchy) and outer (event) horizons, finding
in all cases that their product gives the square of the moduli-independent
entropy of the extremal solution with the same electric and magnetic charges.Comment: Many small, inessential changes. Some misprints corrected and a few
references adde
Postconditioning is protective in renal reperfusion injury only in male rats. A gender difference study
Task-Related Effects on the Temporal and Spatial Dynamics of Resting-State Functional Connectivity in the Default Network
Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state, usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed two primary modes of FC, assessed using a posterior cingulate seed – a robust correlation among DN regions that is stable both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas, including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into resting-state periods
Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw
Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic substrate, its composition, structure, pretreatment process, and reactor design. In the present study, efforts were made to produce cellulase enzyme using rice straw. The produced enzyme was used for the hydrolysis of selected lignocellulosic substrate, i.e., sorghum straw. When rice straw was used as a substrate for cellulase production under solid state fermentation, the highest enzyme activity obtained was 30.7 FPU/gds, using T. reesei NCIM 992. 25 FPU/g of cellulase was added to differently treated (native, alkali treated, alkali treated followed by 3% acid treated and alkali treated followed by 3 and 5% acid treated) sorghum straw and hydrolysis was carried out at 50 °C for 60 h. 42.5% hydrolysis was obtained after 36 h of incubation. Optimization of enzyme loading, substrate concentration, temperature, time and buffer yielded a maximum of 546.00 ± 0.55 mg/g sugars (54.60 ± 0.44 g/l) with an improved hydrolysis efficiency of 70 ± 0.45%. The enzymatic hydrolyzate can be used for fermentation of ethanol by yeasts
- …
