93 research outputs found
Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient's death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.This work was supported by FEDER and FCT – Fundação para a Ciência e a Tecnologia (contract PEst-OE/EQB/LA0023/2011_ research line: Systems and Synthetic Biology; PhD grant to A.M. – SFRH/BD/37012/2007, and PD grants to S.S. – SFRH/BPD/75483/2010 and C.C. – SFRH/BPD/ 81220/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.
In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005
Clinical variability in spinal muscular atrophy type III
Objective:
We report natural history data in a large cohort of 199 patients with spinal muscular atrophy (SMA) type III assessed using the Hammersmith Functional Motor Scale Expanded (HFMSE). The aim of the study was to establish the annual rate and possible patterns of progression according to a number of variables, such as age of onset, age at assessment, SMN2 copy number, and functional status.
Methods:
HFMSE longitudinal changes were assessed using piecewise linear mixed‐effects models. The dependency in the data due to repeated measures was accounted for by a random intercept per individual and an unstructured covariance R matrix was used as correlation structure. An additional descriptive analysis was performed for 123 patients, for a total of 375 12‐month assessments.
Results:
A break point at age 7 years was set for the whole cohort and for SMA IIIA and IIIB. Age, SMA type, and ambulatory status were significantly associated with changes in mean HFMSE score, whereas gender and SMN2 copy number were not. The increase in response before the break point of age 7 years is significant only for SMA IIIA (β = 1.79, p < 0.0001). After the break point, the change in the rate of HFMSE score significantly decrease for both SMA IIIA (β = −1.15, p < 0.0001) and IIIB (β = −0.69, p = 0.002).
Interpretation:
Our findings contribute to the understanding of the natural history of SMA type III and will be helpful in the interpretation of the real‐world data of patients treated with commercially available drugs. ANN NEUROL 2020;88:1109–111
Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data.
The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7-15.8 years), and 90 non-ambulant (age range: 9.08-24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials
EEG-fMRI Based Information Theoretic Characterization of the Human Perceptual Decision System
The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from previous validations in the sensory to the cognitive domain and how it enables the economic description of neural spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features' marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly distributed and dynamic encoding of task-relevant information in the human brain
Linking Oviposition Site Choice to Offspring Fitness in Aedes aegypti: Consequences for Targeted Larval Control of Dengue Vectors
Controlling the mosquito Aedes aegypti, the predominant dengue vector, requires understanding the ecological and behavioral factors that influence population abundance. Females of several mosquito species are able to identify high-quality egg-laying sites, resulting in enhanced offspring development and survival, and ultimately promoting population growth. Here, the authors investigated egg-laying decisions of Ae. aegypti. Paradoxically, they found that larval survival and development were poorest in the containers females most often selected for egg deposition. Thus, egg-laying decisions may contribute to crowding of larvae and play a role in regulating mosquito populations. The authors also tested whether removal of the containers producing the most adult mosquitoes, a World Health Organization-recommended dengue prevention strategy, changes the pattern of how females allocate their eggs. Elimination of the most productive containers led to a more even distribution of eggs in one trial, but not another. These results suggest that behavioral adjustments by egg-laying females may lessen the effectiveness of a common mosquito control tactic. The authors advocate incorporating control strategies that take advantage of the natural egg-laying preferences of this vector species, such as luring egg-laying females to traps or places where their eggs will accumulate, but not develop
Paracellular Absorption: A Bat Breaks the Mammal Paradigm
Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen
Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data
The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7–15.8 years), and 90 non-ambulant (age range: 9.08–24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials
Predicting trajectories of the north star ambulatory assessment total score in Duchenne muscular dystrophy
Copyright \ua9 2025 Muntoni et al. The North Star Ambulatory Assessment (NSAA) is a widely used functional endpoint in drug development for ambulatory patients with Duchenne muscular dystrophy (DMD). Accurately predicting NSAA total score trajectories is important for designing randomized trials for novel therapies in DMD and for contextualizing outcomes, especially over longer-term follow-up (>18 months) when placebo-controlled studies are infeasible. We developed a prognostic model for NSAA total score trajectories over at most 5 years of follow-up for patients with DMD aged 4 to < 16 years who were initially ambulatory and receiving corticosteroids but no other disease-modifying therapies. The model was based on longitudinal data from four natural history databases: UZ Leuven, PRO-DMD-01 (provided by CureDuchenne), the North Star Clinical Network, and iMDEX. Candidate predictors included age, height, weight, body mass index, steroid type and regime, NSAA total score, rise from floor velocity and 10-meter walk/run velocity, as well as DMD genotype class, index year, and data source. Among N=416 patients at baseline, mean age was 8.2 years, mean NSAA total score was 24, and 61% were receiving prednisone and 39% deflazacort, with the majority having been treated with daily corticosteroid regimens (69%) relative to other regimens (31%). Patients had an average of four NSAA assessments post-baseline during a median follow-up of 2.6 years (inter-quartile range 1.9 to 3.6 years). The best-fitting model in the full study sample explained 39% of the variation in NSAA total score changes, with prediction errors of \ub13.6, 5.1, 5.9, 7.5, 9.5 NSAA units during follow-up years 1-5, respectively. The most important predictors were baseline age, NSAA, rise from floor velocity, and 10-meter walk/run velocity. In conclusion, trajectories of ambulatory motor function in DMD, as measured by the NSAA total score, can be well-predicted using readily available baseline characteristics. We discuss applications of these predictions to DMD drug development
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …
