3,145 research outputs found
Molecular footprints of the Holocene retreat of dwarf birch in Britain
© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Restoration of the Norfolk Broads; factors affecting water plant recovery:Overview and sediment influences
A novel isolator-based system promotes viability of human embryos during laboratory processing
In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations
Comparison of DC Bead-irinotecan and DC Bead-topotecan drug eluting beads for use in locoregional drug delivery to treat pancreatic cancer
DC Bead is a drug delivery embolisation system that can be loaded with doxorubicin or irinotecan for the treatment of a variety of liver cancers. In this study we demonstrate that the topoisomerase I inhibitor topotecan hydrochloride can be successfully loaded into the DC Bead sulfonate-modified polyvinyl alcohol hydrogel matrix, resulting in a sustained-release drug eluting bead (DEBTOP) useful for therapeutic purposes. The in vitro drug loading capacity, elution characteristics and the effects on mechanical properties of the beads are described with reference to our previous work with irinotecan hydrochloride (DEBIRI). Results showed that drug loading was faster when the solution was agitated compared to static loading and a maximum loading of ca. 40–45 mg topotecan in 1 ml hydrated beads was achievable. Loading the drug into the beads altered the size, compressibility moduli and colour of the bead. Elution was shown to be reliant on the presence of ions to perform the necessary exchange with the electrostatically bound topotecan molecules. Topotecan was shown by MTS assay to have an IC50 for human pancreatic adenocarcinoma cells (PSN-1) of 0.22 and 0.27 lM compared to 28.1 and 19.2 lM for irinotecan at 48 and 72 h, respectively. The cytotoxic efficacy of DEBTOP on PSN-1 was compared to DEBIRI. DEPTOP loaded at 6 & 30 mg ml-1, like its free drug form, was shown to be more potent than DEBIRI of comparable doses at 24, 48 & 72 h using a slightly modified MTS assay. Using a PSN-1 mouse xenograft model, DEBIRI doses of 3.3–6.6 mg were shown to be well tolerated (even with repeat administration) and effective in reducing the tumour size. DEBTOP however, was lethal after 6 days at doses of 0.83–1.2 mg but demonstrated reasonable efficacy and tolerability (again with repeat injection possible) at 0.2–0.4 mg doses. Care must therefore be taken when selecting the dose of topotecan to be loaded into DC Bead given its greater potency and potential toxicity
Dynamic modeling of mean-reverting spreads for statistical arbitrage
Statistical arbitrage strategies, such as pairs trading and its
generalizations, rely on the construction of mean-reverting spreads enjoying a
certain degree of predictability. Gaussian linear state-space processes have
recently been proposed as a model for such spreads under the assumption that
the observed process is a noisy realization of some hidden states. Real-time
estimation of the unobserved spread process can reveal temporary market
inefficiencies which can then be exploited to generate excess returns. Building
on previous work, we embrace the state-space framework for modeling spread
processes and extend this methodology along three different directions. First,
we introduce time-dependency in the model parameters, which allows for quick
adaptation to changes in the data generating process. Second, we provide an
on-line estimation algorithm that can be constantly run in real-time. Being
computationally fast, the algorithm is particularly suitable for building
aggressive trading strategies based on high-frequency data and may be used as a
monitoring device for mean-reversion. Finally, our framework naturally provides
informative uncertainty measures of all the estimated parameters. Experimental
results based on Monte Carlo simulations and historical equity data are
discussed, including a co-integration relationship involving two
exchange-traded funds.Comment: 34 pages, 6 figures. Submitte
Annual and seasonal movements of migrating short-tailed shearwaters reflect environmental variation in sub-Arctic and Arctic waters
The marine ecosystems of the Bering Sea and adjacent southern Chukchi Sea are experiencing rapid changes due to recent reductions in sea ice. Short-tailed shearwaters Puffinus tenuirostris visit this region in huge numbers between the boreal summer and autumn during non-breeding season, and represent one of the dominant top predators. To understand the implications for this species of ongoing environmental change in the Pacific sub-Arctic and Arctic seas, we tracked the migratory movements of 19 and 24 birds in 2010 and 2011, respectively, using light-level geolocators. In both years, tracked birds occupied the western (Okhotsk Sea and Kuril Islands) and eastern (southeast Bering Sea) North Pacific from May to July. In August–September of 2010, but not 2011, a substantial proportion (68 % of the tracked individuals in 2010 compared to 38 % in 2011) moved through the Bering Strait to feed in the Chukchi Sea. Based on the correlation with oceanographic variables, the probability of shearwater occurrence was highest in waters with sea surface temperatures (SSTs) of 8–10 °C over shallow depths. Furthermore, shearwaters spent more time flying when SST was warmer than 9 °C, suggesting increased search effort for prey. We hypothesized that the northward shift in the distribution of shearwaters may have been related to temperature-driven changes in the abundance of their dominant prey, krill (Euphausiacea), as the timing of krill spawning coincides with the seasonal increase in water temperature. Our results indicate a flexible response of foraging birds to ongoing changes in the sub-Arctic and Arctic ecosystems
Observational study of the development and evaluation of a fertility preservation patient decision aid for teenage and adult women diagnosed with cancer: The Cancer, Fertility and Me research protocol
Introduction: Women diagnosed with cancer and facing potentially sterilising cancer treatment have to make time-pressured decisions regarding fertility preservation with specialist fertility services whilst undergoing treatment of their cancer with oncology services. Oncologists identify a need for resources enabling them to support women’s fertility preservation decisions more effectively; women report wanting more specialist information to make these decisions. The overall aim of the ‘Cancer, Fertility and Me’ study is to develop and evaluate a new evidence-based patient decision aid (ptDA) for women with any cancer considering fertility preservation to address this unmet need. Methods and analysis: This is a prospective mixed-method observational study including women of reproductive age (16 years +) with a new diagnosis of any cancer across two regional cancer and fertility centres in Yorkshire, UK. The research involves three stages. In Stage 1 the aim is to develop the ptDA using a systematic method of evidence synthesis and multidisciplinary expert review of current clinical practice and patient information. In Stage 2, the aim is to assess the face validity of the ptDA. Feedback on its content and format will be ascertained using both questionnaires and interviews with patients, user groups and key stakeholders. Finally, in Stage 3 the acceptability of using this resource when integrated into usual cancer care pathways at the point of cancer diagnosis and treatment planning will be evaluated. This will involve a quantitative and qualitative evaluation of the ptDA in clinical practice. Measures chosen include using count data of the ptDAs administered in clinics and accessed online, decisional and patient-reported outcome measures and qualitative feedback. Quantitative data will be analysed using descriptive statistics, paired sample t tests and confidence intervals; interviews will be analysed using thematic analysis. Ethics and dissemination: Research Ethics Committee approval (Ref: 16/EM/0122) and Health Research Authority approval (Ref: 194751) has been granted. Findings will be published in open access peer-reviewed journals, presented at conferences for academic and health professional audiences, with feedback to health professionals and program managers. The Cancer, Fertility and Me ptDA will be disseminated via a diverse range of open-access media, study and charity websites, professional organisations and academic sources. External endorsement will be sought from the International Patient Decision Aid Standards (IPDAS) Collaboration inventory of ptDAs and other relevant professional organisations e.g. the British Fertility Society. Trial registration number: NCT02753296 (www.clinicaltrials.gov); pre-results
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
A Minimal Model of Metabolism Based Chemotaxis
Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
- …
