578 research outputs found

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer

    Get PDF
    BACKGROUND. Monocarboxylate transporters (MCTs) are transmembrane proteins involved in the transport of monocarboxylates across the plasma membrane, which appear to play an important role in solid tumours, however the role of MCTs in prostate cancer is largely unknown.The aim of the present work was to evaluate the clinico-pathological value of monocarboxylate transporters (MCTs) expression, namely MCT1, MCT2 and MCT4, together with CD147 and gp70 as MCT1/4 and MCT2 chaperones, respectively, in prostate carcinoma. METHODS. Prostate tissues were obtained from 171 patients, who performed radical prostatectomy and 14 patients who performed cystoprostatectomy. Samples and clinico-pathological data were retrieved and organized into tissue microarray (TMAs) blocks. Protein expression was evaluated by immunohistochemistry in neoplastic (n= 171), adjacent non-neoplastic tissues (n= 135), PIN lesions (n=40) and normal prostatic tissue (n=14). Protein expression was correlated with patients' clinicopathologic characteristics. RESULTS. In the present study, a significant increase of MCT2 and MCT4 expression in the cytoplasm of tumour cells and a significant decrease in both MCT1 and CD147 expression in prostate tumour cells was observed when compared to normal tissue. All MCT isoforms and CD147 were expressed in PIN lesions. Importantly, for MCT2 and MCT4 the expression levels in PIN lesions were between normal and tumour tissue, which might indicate a role for these MCTs in the malignant transformation. Associations were found between MCT1, MCT4 and CD147 expressions and poor prognosis markers; importantly MCT4 and CD147 overexpression correlated with higher PSA levels, Gleason score and pT stage, as well as with perineural invasion and biochemical recurrence. CONCLUSIONS. Our data provides novel evidence for the involvement of MCTs in prostate cancer. According to our results, we consider that MCT2 should be further explored as tumour marker and both MCT4 and CD147 as markers of poor prognosis in prostate cancer.NPG, CP and VMG received fellowships from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009, SFRH/BPD/69479/ 2010 and SFRH/BI/33503/2008, respectively. This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of Programa Operacional Temático Factores de Competitividade” (COMPETE) of Quadro Comunitário de Apoio III and co-financed by Fundo Comunitário Europeu FEDER

    Role of monocarboxylate transporters in human cancers : state of the art

    Get PDF
    Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acidresistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype

    Get PDF
    "BMC Cancer 2014 14:734"BACKGROUND: Cancer stem cells are hypoxia-resistant and present a preponderant glycolytic metabolism. These characteristics are also found in basal-like breast carcinomas (BLBC), which show increased expression of cancer stem cell markers.Recently, we demonstrated that P-cadherin, a biomarker of BLBC and a poor prognostic factor in this disease, mediates stem-like properties and resistance to radiation therapy. Thus, the aim of the present study was to evaluate if P-cadherin expression was associated to breast cancer cell populations with an adapted phenotype to hypoxia. METHODS: Immunohistochemistry was performed to address the expression of P-cadherin, hypoxic, glycolytic and acid-resistance biomarkers in primary human breast carcinomas. In vitro studies were performed using basal-like breast cancer cell lines. qRT-PCR, FACS analysis, western blotting and confocal microscopy were used to assess the expression of P-cadherin after HIF-1a stabilization, achieved by CoCl2 treatment. siRNA-mediated knockdown was used to silence the expression of several targets and qRT-PCR was employed to evaluate the effects of P-cadherin on HIF-1a signaling. P-cadherin high and low breast cancer cell populations were sorted by FACS and levels of GLUT1 and CAIX were assessed by FACS and western blotting. Mammosphere forming efficiency was used to determine the stem cell activity after specific siRNA-mediated knockdown, further confirmed by western blotting. RESULTS: We demonstrated that P-cadherin overexpression was significantly associated with the expression of HIF-1a, GLUT1, CAIX, MCT1 and CD147 in human breast carcinomas. In vitro, we showed that HIF-1a stabilization was accompanied by increased membrane expression of P-cadherin and that P-cadherin silencing led to a decrease of the mRNA levels of GLUT1 and CAIX. We also found that the cell fractions harboring high levels of P-cadherin were the same exhibiting more GLUT1 and CAIX expression. Finally, we showed that P-cadherin silencing significantly decreases the mammosphere forming efficiency in the same range as the silencing of HIF-1a, CAIX or GLUT1, validating that all these markers are being expressed by the same breast cancer stem cell population. CONCLUSIONS: Our results establish a link between aberrant P-cadherin expression and hypoxic, glycolytic and acid-resistant breast cancer cells, suggesting a possible role for this marker in cancer cell metabolismo.This work was funded by FEDER funds through the COMPETE Program (Programa Operacional Factores de Competitividade) and by national funds through FCT (Portuguese Foundation for Science and Technology, Portugal), mainly in the context of the scientific project PTDC/SAU-GMG/120049/2010-FCOMP-01-0124-FEDER-021209, and partially by PTDC/SAU-FCF/104347/2008. FCT funded the research grants of BS (SFRH/BD/69353/2010), ASR (SFRH/BPD/75705/2011), ARN (grant from the project PTDC/SAU-GMG/120049/2010), CP (SFRH/BPD/69479/2010), AV (SFRH/BPD/90303/2012), as well as JP, with Programa Ciencia 2007 (Contratacao de Doutorados para o SCTN - financiamento pelo POPH - QREN - Tipologia 4.2 - Promocao do Emprego Cientifico, comparticipado pelo Fundo Social Europeu e por fundos nacionais do MCTES) and Programa IFCT (FCT Investigator). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT

    AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior

    Get PDF
    Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ 3 (AP2γ 3, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ 3 is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ 3 in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ 3-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ 3 deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and d epressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.We acknowledge the excellent technical expertise of Luís Martins and Andrea Steiner-Mezzadri. We would also like to acknowledge Magdalena Götz for the insightful comments on the paper. AMP, PP, ARS, JS, VMS, NDA and JFO received fellowships from the Portuguese Foundation for Science and Technology (FCT). LP received fellowship from FCT and her work is funded by FCT (IF/01079/2014) and Bial Foundation (427/14) projects. This work was cofunded by the Life and Health Sciences Research Institute (ICVS), and Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (projects NORTE-01-0145- FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio

    Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis

    Get PDF
    Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of ‘Programa Operacional Temático Factores de Competitividade’ (COMPETE) of ‘Quadro Comunitário de Apoio III’ and co-financed by the Fundo Europeu De Desenvolvimento Regional (FEDER). Ricardo Amorim was recipient of the fellowship SFRH/BD/98002/2013, from Fundação para a Ciência e a Tecnologia (FCT Portugal).info:eu-repo/semantics/publishedVersio

    A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer

    Get PDF
    Background In a malignant tumour, cancer cells are embedded in stromal cells, namely cancer-associated fibroblasts (CAFs). These CAFs are now accepted as important players in cancer dynamics, being involved in tumour growth and progression. Although there are various reports on the interaction between tumour and stromal cells, the clinico-pathological significance of this cross-talk is still largely unknown. In this study, we aimed to characterise the expression of key metabolic proteins involved in glucose transport, pyruvate/lactate shuttle system, glycolytic metabolism and fatty acid oxidation in CAFs and tumour cells in different stages of malignant transformation. We further aimed to contextualise the clinico-pathological significance of these protein expression profiles with reference to known prognostic indicators, including biochemical recurrence in pT stage. Methods Prostate tissues were obtained from 480 patients with a median age of 64 years following radical prostatectomy with no previous hormonal therapy. Tissues were analysed for the expression of several key metabolism-related proteins in glands and surrounding fibroblasts by immunohistochemistry. Reliable markers of prognosis such as pT stage and biochemical recurrence were assessed for each case. Results We observed that prostate cancer cells did not rely mainly on glycolytic metabolism, while there was a high expression of MCT4 and CAIX - in CAFs. This corroborates the hypothesis of the "Reverse Warburg effect" in prostate cancer, in which fibroblasts are under oxidative stress and express CAIX, an established hypoxia marker. We found that alterations in the expression of metabolism-related proteins were already evident in the early stages of malignant transformation, suggesting the continuing alteration of CAFs from an early stage. Additionally, and for the first time, we show that cases showing high MCT4 expression in CAFs with concomitant strong MCT1 expression in prostate cancer (PCa) cells are associated with poor clinical outcome, namely pT3 stage of the tumour. Conclusions In summary, this work demonstrates for the first time the clinico-pathological significance of the lactate shuttle in prostate cancer. It also suggests that other alterations in CAFs may be useful prognostic factors, and further supports the use of MCT1/MCT4 as targets for PCa therapy.NPG received a fellowship from the Portuguese Foundation for Science and Technology (FCT), refs. SFRH/BD/61027/2009. This work was supported by the FCT grant ref. PTDC/SAUMET/113415/2009, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER. JA was supported by a Boehringer Ingelheim Fonds fellowship

    Structural power and the evolution of collective fairness in social networks

    Get PDF
    From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks-which we call structural power-has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules-as found in human social networks that often exhibit community structure-providing an interaction environment that maximizes collective fairness.This research was supported by Fundacao para a Ciencia e Tecnologia (FCT) through grants SFRH/BD/94736/2013, PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014 and by multi-annual funding of CBMA and INESC-ID (under the projects UID/BIA/04050/2013 and UID/CEC/50021/2013) provided by FCT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control
    corecore