959 research outputs found

    Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar

    Full text link
    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2)B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpfsdpf shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in resubmission on April 1

    Online Raman on M-branch : First results

    Get PDF

    Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments

    Full text link
    The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.Comment: to be published in Phys. Rev.

    Raman measurements of heavy ion irradiated water-bearing minerals

    Get PDF

    Optimized etching of swift heavy ion tracks in calcite

    Get PDF

    Spectroscopic study on ion irradiated calcites and gypsum

    Get PDF

    One-neutron knockout from 57^{57}Ni

    Get PDF
    The single-particle structure of 57^{57}Ni and level structure of 56^{56}Ni were investigated with the \mbox{9^{9}Be (57^{57} Ni,56^{56}Ni+γ\gamma)X\it{X}} reaction at 73 MeV/nucleon. An inclusive cross section of 41.4(12) mb was obtained for the reaction, compared to a theoretical prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is exhausted. This reduction in the observed spectroscopic strength is consistent with that found for lighter well-bound nuclei. One-neutron removal spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited states of 56^{56}Ni were deduced.Comment: Phys. Rev. C, accepte
    corecore