959 research outputs found
Quadrupole collectivity beyond N=28: Intermediate-energy Coulomb excitation of 47,48Ar
We report on the first experimental study of quadrupole collectivity in the
very neutron-rich nuclei \nuc{47,48}{Ar} using intermediate-energy Coulomb
excitation. These nuclei are located along the path from doubly-magic Ca to
collective S and Si isotopes, a critical region of shell evolution and
structural change. The deduced transition strengths are confronted with
large-scale shell-model calculations in the shell using the
state-of-the-art SDPF-U and EPQQM effective interactions. The comparison
between experiment and theory indicates that a shell-model description of Ar
isotopes around N=28 remains a challenge.Comment: Accepted for publication in Physical Review Letters, typos fixed in
resubmission on April 1
Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments
The method of intermediate-energy Coulomb excitation has been widely used to
determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic
nuclei with even numbers of protons and neutrons. Transition rates measured
with intermediate-energy Coulomb excitation are compared to their respective
adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values
obtained with a variety of standard methods. Intermediate-energy Coulomb
excitation is found to have an accuracy comparable to those of long-established
experimental techniques.Comment: to be published in Phys. Rev.
Installation of diamond window in Paris-Edinburgh press for sample analysis before, during, and after ion irradiation
One-neutron knockout from Ni
The single-particle structure of Ni and level structure of Ni
were investigated with the \mbox{Be (Ni,Ni+)} reaction at 73 MeV/nucleon. An inclusive cross
section of 41.4(12) mb was obtained for the reaction, compared to a theoretical
prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is
exhausted. This reduction in the observed spectroscopic strength is consistent
with that found for lighter well-bound nuclei. One-neutron removal
spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited
states of Ni were deduced.Comment: Phys. Rev. C, accepte
- …
