6 research outputs found
Recommended from our members
Interactions between metal ions and DNA
84 years elapsed between the announcements of the periodic table and that of the DNA double helix in 1953, and the two have been combined in many ways since then. In this chapter an outline of the fundamentals of DNA structure leads into a range of examples showing how the natural magnesium and potassium ions found in nature can be substituted in a diversity of applications. The dynamic structures found in nature have been studied in the more controlled but artificial environment of the DNA crystal using examples from sodium to platinum and also in a range of DNA-binding metal complexes. While NMR is an essential technique for studying nucleic acid structure and conformation, most of our knowledge of metal ion binding has come from X-ray crystallography. These days the structures studied, and therefore also the diversity of metal binding, go beyond the double helix to triplexes, hairpin loops, junctions and quadruplexes, and the chapter describes briefly how these pieces fit into the DNA jigsaw. In a final section, the roles of metal cations in the crystallisation of new DNA structures are discussed, along with an introduction to the versatility of the periodic table of absorption edges for nucleic acid structure determination
Universal testing for MSI/MMR status in colorectal and endometrial cancers to identify Lynch syndrome cases: state of the art in Italy and consensus recommendations from the Italian Association for the Study of Familial Gastrointestinal Tumors (AIFEG)
Free triiodothyronine and global registry of acute coronary events risk score on predicting long-term major adverse cardiac events in STEMI patients undergoing primary PCI
Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity
Doxorubicin (DOX) is a commonly used life-saving antineoplastic agent that also causes dose-dependent cardiotoxicity. Because ATP is absolutely required to sustain normal cardiac contractile function and because impaired ATP synthesis through creatine kinase (CK), the primary myocardial energy reserve reaction, may contribute to contractile dysfunction in heart failure, we hypothesized that impaired CK energy metabolism contributes to DOX-induced cardiotoxicity. We therefore overexpressed the myofibrillar isoform of CK (CK-M) in the heart and determined the energetic, contractile and survival effects of CK-M following weekly DOX (5mg/kg) administration using in vivo (31)P MRS and (1)H MRI. In control animals, in vivo cardiac energetics were reduced at 7 weeks of DOX protocol and this was followed by a mild but significant reduction in left ventricular ejection fraction (EF) at 8 weeks of DOX, as compared to baseline. At baseline, CK-M overexpression (CK-M-OE) increased rates of ATP synthesis through cardiac CK (CK flux) but did not affect contractile function. Following DOX however, CK-M-OE hearts had better preservation of creatine phosphate and higher CK flux and higher EF as compared to control DOX hearts. Survival after DOX administration was significantly better in CK-M-OE than in control animals (p<0.02). Thus CK-M-OE attenuates the early decline in myocardial high-energy phosphates and contractile function caused by chronic DOX administration and increases survival. These findings suggest that CK impairment plays an energetic and functional role in this DOX-cardiotoxicity model and suggests that metabolic strategies, particularly those targeting CK, offer an appealing new strategy for limiting DOX-associated cardiotoxicity
