55 research outputs found
Epidemiological risk factors for adult dengue in Singapore: an 8-year nested test negative case control study
10.1186/s12879-016-1662-4BMC Infectious Diseases16132
Evidence that urocortin is absent from neurons of the Edinger-Westphal nucleus in pigeons
Depletion of highly abundant proteins from human cerebrospinal fluid: a cautionary note
GAMETOPHYTE DEFECTIVE 1, a Putative Subunit of RNases P/MRP, Is Essential for Female Gametogenesis and Male Competence in Arabidopsis
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants
Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania
The trans-ancestral genomic architecture of glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
Epidemiological risk factors for adult dengue in Singapore: an 8-year nested test negative case control study
Exposure to a community-wide campaign is associated with physical activity and sedentary behavior among Hispanic adults on the Texas-Mexico border
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular
conduction, and is associated with conduction abnormalities, pacemaker
implantation, atrial fibrillation (AF), and cardiovascular mortality.
Here we report a multi-ancestry (N = 293,051) genome-wide association
meta-analysis for the PR interval, discovering 202 loci of which 141
have not previously been reported. Variants at identified loci increase
the percentage of heritability explained, from 33.5% to 62.6%. We
observe enrichment for cardiac muscle developmental/contractile and
cytoskeletal genes, highlighting key regulation processes for
atrioventricular conduction. Additionally, 8 loci not previously
reported harbor genes underlying inherited arrhythmic syndromes and/or
cardiomyopathies suggesting a role for these genes in cardiovascular
pathology in the general population. We show that polygenic
predisposition to PR interval duration is an endophenotype for
cardiovascular disease, including distal conduction disease, AF, and
atrioventricular pre-excitation. These findings advance our
understanding of the polygenic basis of cardiac conduction, and the
genetic relationship between PR interval duration and cardiovascular
disease.
</p
The hydrogen economy: a pragmatic path forward
For hydrogen to play a meaningful role in a sustainable energy system, all elements of the value chain must scale coherently. Advocates support electrolytic (green) hydrogen or (blue) hydrogen that relies on methane reformation with carbon capture and storage, however, efforts to definitively choose how to deliver this scaling up are premature. For blue hydrogen, methane emissions must be minimised. Best in class supply chain management in combination with high rates of CO2 capture can deliver a low carbon hydrogen product. In the case of electrolytic hydrogen, the carbon intensity of power needs to be very low for this to be a viable alternative to blue hydrogen. Until the electricity grid is deeply decarbonised, there is an opportunity cost associated with using renewable energy to produce hydrogen, as opposed to integrating this with the power system. To have a realistic chance of success, net zero transition pathways need to be formulated in a way that is coherent with socio-political-economic constraints
- …
