1,401 research outputs found
Synthesis and characterization of attosecond light vortices in the extreme ultraviolet
Infrared and visible light beams carrying orbital angular momentum (OAM) are
currently thoroughly studied for their extremely broad applicative prospects,
among which are quantum information, micromachining and diagnostic tools. Here
we extend these prospects, presenting a comprehensive study for the synthesis
and full characterization of optical vortices carrying OAM in the extreme
ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond
infrared helically phased beam into its high-order harmonics, showing that each
harmonic order carries the total number of OAM units absorbed in the process up
to very high orders (57). This allows us to synthesize and characterize
helically shaped XUV trains of attosecond pulses. To demonstrate a typical use
of these new XUV light beams, we show our ability to generate and control,
through photoionization, attosecond electron beams carrying OAM. These
breakthroughs pave the route for the study of a series of fundamental phenomena
and the development of new ultrafast diagnosis tools using either photonic or
electronic vortices
Recommended from our members
Mediating punitiveness: understanding public attitudes towards work-related fatality cases
This paper concerns an empirical investigation into public attitudes towards work-related fatality cases, where organizational offenders cause the death of workers or members of the public. This issue is particularly relevant following the introduction of the Corporate Manslaughter and Corporate Homicide Act 2007 into UK law. Here, as elsewhere, the use of criminal law against companies reflects governmental concerns over public confidence in the law’s ability to regulate risk. The empirical findings demonstrate that high levels of public concern over these cases do not translate into punitive attitudes. Such cases are viewed rationally and constructively, and lead to instrumental rather than purely expressive enforcement preferences
Korn's second inequality and geometric rigidity with mixed growth conditions
Geometric rigidity states that a gradient field which is -close to the
set of proper rotations is necessarily -close to a fixed rotation, and is
one key estimate in nonlinear elasticity. In several applications, as for
example in the theory of plasticity, energy densities with mixed growth appear.
We show here that geometric rigidity holds also in and in
interpolation spaces. As a first step we prove the corresponding linear
inequality, which generalizes Korn's inequality to these spaces
Temporal evolution of sand corridors in a <i>Posidonia oceanica</i> seascape: a 15-year study
The spatial dynamic of Posidonia oceanica meadows is a process extending over centuries. This paper shows evidence of the natural dynamics of P. oceanica “shifting intermattes” or “sand corridors” (hereafter SCs): unvegetated patches within a dense meadow. We studied features and temporal evolution (2001-2015) of 5 SCs in the Calvi Bay (Corsica) at 15 m depth and followed the characteristics the P. oceanica meadow lining the edge of patches. All SCs show a similar topography. The eroded side is a vertical edge where roots, rhizomes and sediments are visible, when on the opposite colonized side, the sand is at the same level as the continuous meadow. The vertical edge reaches a maximum height of 160 cm and is eroded by orbital bottom currents with a maximum speed of 12 cm.s-1, the erosion speed ranging from 0.6 to 15 cm.y-1. SCs progress toward the coastline with a mean speed of 10 cm.y-1, the rate of colonization by P. oceanica shoots ranging from 1.5 to 21 cm.y-1. We calculated that the studied SCs would reach the coastline within 500 to 600 years. We finally discuss the implication of such dynamic in the framework of meadows’ colonization assessment and the seascape dynamic
Analisa Pasar Proyek Mini Market
Usaha mini market telah menggeser posisi pasar-pasar tradisional sebagai tempat perbelanjaan kebutuhan bahan pokok sehari-hari, sehingga USAha pendiriannya akan memberikan prospek yang lebih baik pada masa sekarang dan yang akan datang. Berdasarkan Analisa Persediaan (Supply Analysis), Analisa Permintaan (Demand Analysis) dan Analisa Persaingan Pasar, USAha pendirian mini market di kelurahan Keputih Kecamatan Sukolilo Surabaya dengan jumlah pertumbuhan penduduk 2,11 % pertahun dan jumlah penduduk miskin sekitar 10,77 % masih memiliki potensi yang sangat besar untuk didirikan. Tujuan Penulisan adalah untuk mengetahui analisa pasar proyek USAha mini market yang masih memiliki peluang besar untuk didirikan seiring dengan kebutuhan masyarakat yang terus meningkat
Organisms as ecosystems engineers: The case of amphipod grazers from <i>Posidonia oceanica</i> meadows
Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function
Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass <i>Posidonia oceanica</i>
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems
The Density Matrix Renormalization Group for finite Fermi systems
The Density Matrix Renormalization Group (DMRG) was introduced by Steven
White in 1992 as a method for accurately describing the properties of
one-dimensional quantum lattices. The method, as originally introduced, was
based on the iterative inclusion of sites on a real-space lattice. Based on its
enormous success in that domain, it was subsequently proposed that the DMRG
could be modified for use on finite Fermi systems, through the replacement of
real-space lattice sites by an appropriately ordered set of single-particle
levels. Since then, there has been an enormous amount of work on the subject,
ranging from efforts to clarify the optimal means of implementing the algorithm
to extensive applications in a variety of fields. In this article, we review
these recent developments. Following a description of the real-space DMRG
method, we discuss the key steps that were undertaken to modify it for use on
finite Fermi systems and then describe its applications to Quantum Chemistry,
ultrasmall superconducting grains, finite nuclei and two-dimensional electron
systems. We also describe a recent development which permits symmetries to be
taken into account consistently throughout the DMRG algorithm. We close with an
outlook for future applications of the method.Comment: 48 pages, 17 figures Corrections made to equation 19 and table
- …
