3,104 research outputs found

    What makes a 'good group'? Exploring the characteristics and performance of undergraduate student groups

    Get PDF
    Group work forms the foundation for much of student learning within higher education, and has many educational, social and professional benefits. This study aimed to explore the determinants of success or failure for undergraduate student teams and to define a ‘good group’ through considering three aspects of group success: the task, the individuals, and the team. We employed a mixed methodology, combining demographic data with qualitative observations and task and peer evaluation scores. We determined associations between group dynamic and behaviour, demographic composition, member personalities and attitudes towards one another, and task success. We also employed a cluster analysis to create a model outlining the attributes of a good small group learning team in veterinary education. This model highlights that student groups differ in measures of their effectiveness as teams, independent of their task performance. On the basis of this, we suggest that groups who achieve high marks in tasks cannot be assumed to have acquired team working skills, and therefore if these are important as a learning outcome, they must be assessed directly alongside the task output

    Are braneworlds born isotropic?

    Get PDF
    It has recently been suggested that an isotropic singularity may be a generic feature of brane cosmologies, even in the inhomogeneous case. Using the covariant and gauge-invariant approach we present a detailed analysis of linear perturbations of the isotropic model Fb{\cal F}_b which is a past attractor in the phase space of homogeneous Bianchi models on the brane. We find that for matter with an equation of state parameter γ>1\gamma > 1, the dimensionless variables representing generic anisotropic and inhomogeneous perturbations decay as t0t\to 0, showing that the model Fb{\cal F}_b is asymptotically stable in the past. We conclude that brane universes are born with isotropy naturally built-in, contrary to standard cosmology. The observed large-scale homogeneity and isotropy of the universe can therefore be explained as a consequence of the initial conditions if the brane-world paradigm represents a description of the very early universe.Comment: Changed to match published versio

    Athlete's knowledge and views on OTC medication

    Get PDF
    A questionnaire was administered to elite athletes from Australia, Canada, the UK, and the USA representing 10 Olympic sports in order to explore knowledge and understanding of overthe- counter (OTC) medication since the removal of many of these substances from the World Anti-Doping Agency (WADA) Prohibited List, in 2004. Athletes demonstrated limited knowledge and understanding. Around half (50.5%) knew the penalty incurred following a doping violation involving a banned OTC stimulant. The terms Monitoring Program and Specified Substance List were understood by 43.3% and 67.5% of respondents, respectively. Overall, the status of substances in relation to the Prohibited List was correctly identified in just 35.1% of cases. As a whole, athletes were of the opinion that OTC stimulants posed a risk to health, were performance enhancing and that their use was against the spirit of sport. They were undecided as to whether these drugs should be returned to the Prohibited List. Elite athletes require targeted education programmes that will enable them to make informed decisions on the potential of OTC medications for therapeutic or performance enhancing purpose

    Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities

    Full text link
    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions

    Inhomogeneous models of interacting dark matter and dark energy

    Full text link
    We derive and analyze a class of spherically symmetric cosmological models whose source is an interactive mixture of inhomogeneous cold dark matter (DM) and a generic homogeneous dark energy (DE) fluid. If the DE fluid corresponds to a quintessense scalar field, the interaction term can be associated with a well motivated non--minimal coupling to the DM component. By constructing a suitable volume average of the DM component we obtain a Friedman evolution equation relating this average density with an average Hubble scalar, with the DE component playing the role of a repulsive and time-dependent Λ\Lambda term. Once we select an ``equation of state'' linking the energy density (μ\mu) and pressure (pp) of the DE fluid, as well as a free function governing the radial dependence, the models become fully determinate and can be applied to known specific DE sources, such as quintessense scalar fields or tachyonic fluids. Considering the simple equation of state p=(γ1)μp= (\gamma-1) \mu with 0γ<2/30\leq\gamma <2/3, we show that the free parameters and boundary conditions can be selected for an adequate description of a local DM overdensity evolving in a suitable cosmic background that accurately fits current observational data. While a DE dominated scenario emerges in the asymptotic future, with total Ω\Omega and qq tending respectively to 1 and -1/2 for all cosmic observers, the effects of inhomogeneity and anisotropy yield different local behavior and evolution rates for these parameters in the local overdense region. We suggest that the models presented can be directly applied to explore the effects of various DE formalisms on local DM cosmological inhomogeneities.Comment: 15 pages, revtex4, 10 eps figure

    Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI observations

    Full text link
    We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet sun using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard \textit{Hinode}. Line profiles of Fe \textsc{i} 557.6 nm were recorded by the Narrow band Filter Imager (NFI) on a 82"×82"82" \times 82" FOV during 75 min with a time step of 28.75 s and 0.08"" pixel size. Vertical velocities were computed at three atmospheric levels (80, 130 and 180 km) using the bisector technique allowing the determination of energy flux in the range 3-10 mHz using two complementary methods (Hilbert transform and Fourier power spectra). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. The net energy flux is upward. In the range 3-10 mHz, a full FOV space and time averaged flux of 2700 W m2^{-2} (lower layer 80-130 km) and 2000 W m2^{-2} (upper layer 130-180 km) is concentrated in less than 1% of the solar surface in the form of narrow (0.3"") AE. Their total duration (including rise and decay) is of the order of 10310^{3} s. Inside each AE, the mean flux is 1.61051.6 10^{5} W m2^{-2} (lower layer) and 1.21051.2 10^{5} W m2^{-2} (upper). Each event carries an average energy (flux integrated over space and time) of 2.510192.5 10^{19} J (lower layer) to 1.910191.9 10^{19} J (upper). More than 10610^{6} events could exist permanently on the Sun, with a birth and decay rate of 3500 s1^{-1}. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.Comment: 18 pages, 10 figure

    The K(ππ)I=2K\to(\pi\pi)_{I=2} Decay Amplitude from Lattice QCD

    Full text link
    We report on the first realistic \emph{ab initio} calculation of a hadronic weak decay, that of the amplitude A2A_2 for a kaon to decay into two \pi-mesons with isospin 2. We find ReA2=(1.436±0.063stat±0.258syst)108GeVA_2=(1.436\pm 0.063_{\textrm{stat}}\pm 0.258_{\textrm{syst}})\,10^{-8}\,\textrm{GeV} in good agreement with the experimental result and for the hitherto unknown imaginary part we find {Im}A2=(6.83±0.51stat±1.30syst)1013GeV\,A_2=-(6.83 \pm 0.51_{\textrm{stat}} \pm 1.30_{\textrm{syst}})\,10^{-13}\,{\rm GeV}. Moreover combining our result for Im\,A2A_2 with experimental values of Re\,A2A_2, Re\,A0A_0 and ϵ/ϵ\epsilon^\prime/\epsilon, we obtain the following value for the unknown ratio Im\,A0A_0/Re\,A0A_0 within the Standard Model: ImA0/ReA0=1.63(19)stat(20)syst×104\mathrm{Im}\,A_0/\mathrm{Re}\,A_0=-1.63(19)_{\mathrm{stat}}(20)_{\mathrm{syst}}\times10^{-4}. One consequence of these results is that the contribution from Im\,A2A_2 to the direct CP violation parameter ϵ\epsilon^{\prime} (the so-called Electroweak Penguin, EWP, contribution) is Re(ϵ/ϵ)EWP=(6.52±0.49stat±1.24syst)×104(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.52 \pm 0.49_{\textrm{stat}} \pm 1.24_{\textrm{syst}}) \times 10^{-4}. We explain why this calculation of A2A_2 represents a major milestone for lattice QCD and discuss the exciting prospects for a full quantitative understanding of CP-violation in kaon decays.Comment: 5 pages, 1 figur

    Opening the Rome-Southampton window for operator mixing matrices

    Full text link
    We show that the running of operators which mix under renormalization can be computed fully non-perturbatively as a product of continuum step scaling matrices. These step scaling matrices are obtained by taking the "ratio" of Z matrices computed at different energies in an RI-MOM type scheme for which twisted boundary conditions are an essential ingredient. Our method allows us to relax the bounds of the Rome-Southampton window. We also explain why such a method is important in view of the light quark physics program of the RBC-UKQCD collaborations. To illustrate our method, using n_f=2+1 domain-wall fermions, we compute the non-perturbative running matrix of four-quark operators needed in K->pipi decay and neutral kaon mixing. Our results are then compared to perturbation theory.Comment: 8 pages, 7 figures. v2: PRD version, minor changes and few references adde

    Asymptotic silence-breaking singularities

    Full text link
    We discuss three complementary aspects of scalar curvature singularities: asymptotic causal properties, asymptotic Ricci and Weyl curvature, and asymptotic spatial properties. We divide scalar curvature singularities into two classes: so-called asymptotically silent singularities and non-generic singularities that break asymptotic silence. The emphasis in this paper is on the latter class which have not been previously discussed. We illustrate the above aspects and concepts by describing the singularities of a number of representative explicit perfect fluid solutions.Comment: 25 pages, 6 figure

    Lattice determination of the K(ππ)I=2K \to (\pi\pi)_{I=2} Decay Amplitude A2A_2

    Full text link
    We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving ReA2=1.381(46)stat(258)syst108A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8} GeV and ImA2=6.54(46)stat(120)syst1013A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13} GeV. ReA2A_2 is in good agreement with the experimental result, whereas the value of ImA2A_2 was hitherto unknown. We are also working towards a direct computation of the K(ππ)I=0K\to(\pi\pi)_{I=0} amplitude A0A_0 but, within the standard model, our result for ImA2A_2 can be combined with the experimental results for ReA0A_0, ReA2A_2 and ϵ/ϵ\epsilon^\prime/\epsilon to give ImA0/A_0/ReA0=1.61(28)×104A_0= -1.61(28)\times 10^{-4} . Our result for Im\,A2A_2 implies that the electroweak penguin (EWP) contribution to ϵ/ϵ\epsilon^\prime/\epsilon is Re(ϵ/ϵ)EWP=(6.25±0.44stat±1.19syst)×104(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.25 \pm 0.44_{\textrm{stat}} \pm 1.19_{\textrm{syst}}) \times 10^{-4}.Comment: 59 pages, 11 figure
    corecore