3,896 research outputs found
A trivial observation on time reversal in random matrix theory
It is commonly thought that a state-dependent quantity, after being averaged
over a classical ensemble of random Hamiltonians, will always become
independent of the state. We point out that this is in general incorrect: if
the ensemble of Hamiltonians is time reversal invariant, and the quantity
involves the state in higher than bilinear order, then we show that the
quantity is only a constant over the orbits of the invariance group on the
Hilbert space. Examples include fidelity and decoherence in appropriate models.Comment: 7 pages 3 figure
The multilevel trigger system of the DIRAC experiment
The multilevel trigger system of the DIRAC experiment at CERN is presented.
It includes a fast first level trigger as well as various trigger processors to
select events with a pair of pions having a low relative momentum typical of
the physical process under study. One of these processors employs the drift
chamber data, another one is based on a neural network algorithm and the others
use various hit-map detector correlations. Two versions of the trigger system
used at different stages of the experiment are described. The complete system
reduces the event rate by a factor of 1000, with efficiency 95% of
detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
Integration over matrix spaces with unique invariant measures
We present a method to calculate integrals over monomials of matrix elements
with invariant measures in terms of Wick contractions. The method gives exact
results for monomials of low order. For higher--order monomials, it leads to an
error of order 1/N^alpha where N is the dimension of the matrix and where alpha
is independent of the degree of the monomial. We give a lower bound on the
integer alpha and show how alpha can be increased systematically. The method is
particularly suited for symbolic computer calculation. Explicit results are
given for O(N), U(N) and for the circular orthogonal ensemble.Comment: 12 pages in revtex, no figure
Examining a Ripple Effect: Do Spouses’ Behavior Changes Predict Each Other’s Weight Loss?
Background. Including spouses in obesity treatment has been found to promote weight loss. We assessed whether spouses’ diet and activity changes impacted each other’s weight loss when both members attended an active weight loss program (TOGETHER) or only the primary participant attended treatment (ALONE).
Methods. Heterosexual couples () enrolled in an 18-month randomized controlled weight loss trial were weighed and completed measures of dietary intake and physical activity at baseline and 6 months. We conducted dyadic data analyses using the Actor-Partner Interdependence Model.
Results. Participants’ weight loss was not predicted by their partners’ behavior changes. However, partners’ weight loss was predicted by their participants’ changes in calorie and fat intake. When partners were coupled with a participant who did not reduce their own calorie and fat intake as much, these partners had higher weight loss when treated in the TOGETHER group but lower weight loss when they were untreated in the ALONE group. There were no reciprocal effects found with physical activity changes.
Conclusions. Direct treatment had the greatest impact on participants and partners who were treated. Untreated partners’ weight losses were positively impacted by their spouses’ dietary changes, suggesting a ripple effect from treated spouses to their untreated partners
A random matrix approach to decoherence
In order to analyze the effect of chaos or order on the rate of decoherence
in a subsystem, we aim to distinguish effects of the two types of dynamics by
choosing initial states as random product states from two factor spaces
representing two subsystems. We introduce a random matrix model that permits to
vary the coupling strength between the subsystems. The case of strong coupling
is analyzed in detail, and we find no significant differences except for very
low-dimensional spaces.Comment: 11 pages, 5 eps-figure
Scattering fidelity in elastodynamics
The recent introduction of the concept of scattering fidelity, causes us to
revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302
(2003)]. There, the ``distortion'' of the coda of an acoustic signal is
measured under temperature changes. This quantity is in fact the negative
logarithm of scattering fidelity. We re-analyse their experimental data for two
samples, and we find good agreement with random matrix predictions for the
standard fidelity. Usually, one may expect such an agreement for chaotic
systems only. While the first sample, may indeed be assumed chaotic, for the
second sample, a perfect cuboid, such an agreement is more surprising. For the
first sample, the random matrix analysis yields a perturbation strength
compatible with semiclassical predictions. For the cuboid the measured
perturbation strength is much larger than expected, but with the fitted values
for this strength, the experimental data are well reproduced.Comment: 4 page
Long-time fidelity and chaos for a kicked nonlinear oscillator system
We deal with a system comprising a nonlinear (Kerr-like) oscillator excited
by a series of ultra-short external pulses. We introduce the fidelity-based
entropic parameter that can be used as an indicator of quantum chaos. Moreover,
we propose to use the fidelity-like parameter comprising the information about
the mean number of photons in the system. We shall concentrate on the long-time
behaviour of the parameters discussed, showing that for deep chaos cases the
quantum fidelities behave chaotically in the classical sense despite their
strictly quantum character.Comment: 20 pages including 8 figure
Anomalous slow fidelity decay for symmetry breaking perturbations
Symmetries as well as other special conditions can cause anomalous slowing
down of fidelity decay. These situations will be characterized, and a family of
random matrix models to emulate them generically presented. An analytic
solution based on exponentiated linear response will be given. For one
representative case the exact solution is obtained from a supersymmetric
calculation. The results agree well with dynamical calculations for a kicked
top.Comment: 4 pages, 2 figure
- …
