19,193 research outputs found

    H3+ Spectroscopy and the Ionization Rate of Molecular Hydrogen in the Central Few Parsecs of the Galaxy

    Full text link
    We report observations and analysis of infrared spectra of H3+ and CO lines in the Galactic center, within a few parsecs of the central black hole, Sgr A*. We find a cosmic ray ionization rate typically an order of magnitude higher than outside the Galactic center. Notwithstanding, the elevated cosmic ray ionization rate is 4 orders of magnitude too short to match the proton energy spectrum as inferred from the recent discovery of the TeV gamma-ray source in the vicinity of Sgr A*.Comment: 18 pages, 12 figures, Accepted for publication at the Journal of Physical Chemistry A "Oka Festschrift: Celebrating 45 Years of Astrochemistry

    NMR relaxation of quantum spin chains in magnetic fields

    Full text link
    We investigate NMR relaxation rates 1/T_1 of quantum spin chains in magnetic fields. Universal properties for the divergence behavior of 1/T_1 are obtained in the Tomonaga-Luttinger-liquid state. The results are discussed in comparison with experimental results.Comment: 5 pages, 3 figure

    Muon spin relaxation and rotation study on the solid solution of the two spin-gap systems (CH3)2CHNH3-CuCl3 and (CH3)2CHNH3-CuBr3

    Full text link
    Muon-spin-rotation and relaxation studies have been performed on (CH3_3)2_2CHNH3_3Cu(Clx_xBr1x_{1-x})3_3 with xx=0.85 and 0.95, which are solid solutions of the two isomorphic spin-gap systems (CH3_3)2_2CHNH3_3CuCl3_3 and (CH3_3)2_2CHNH3_3CuBr3_3 with different spin gaps. The sample with xx=0.85 showed a clear muon spin rotation under zero-field below TNT_{\rm N}=11.65K, indicating the existence of a long-range antiferromagnetic order. A critical exponent of the hyperfine field was obtained to be β\beta=0.33, which agrees with 3D-Ising model. In the other sample with xx=0.95, an anomalous enhancement of the muon spin relaxation was observed at very low temperatures indicating a critical slowing down due to a magnetic instability of the ground state

    Electric Control of Spin Helicity in a Magnetic Ferroelectric

    Full text link
    Magnetic ferroelectrics or multiferroics, which are currently extensively explored, may provide a good arena to realize a novel magnetoelectric function. Here we demonstrate the genuine electric control of the spiral magnetic structure in one of such magnetic ferroelectrics, TbMnO3. A spin-polarized neutron scattering experiment clearly shows that the spin helicity, clockwise or counter-clockwise, is controlled by the direction of spontaneous polarization and hence by the polarity of the small cooling electric field.Comment: 4 pages, 3 figure
    corecore