3,947 research outputs found

    Sensitivity of the ATLAS Experiment to Extra Dimensions

    Get PDF
    In the late nineties several authors suggested that the extra dimensions predicted by string theory might lead to observable effects at high energy colliders. The ATLAS experiment which will start taking data at the LHC in 2007 will be an excellent place to search for such effects. A large set of models within the ADD or the Randall Sundrum geometries has been studied in ATLAS. These models predict a variety of signatures: jets and missing energy from direct graviton production, high mass tails in dilepton and diphoton production due to virtual graviton exchange, production of Kaluza-Klein excitations of standard model particles, etc. The sensitivity of ATLAS to these signatures will be presented

    Green's functions for far-side seismic images: a polar expansion approach

    Full text link
    We have computed seismic images of magnetic activity on the far surface of the Sun by using a seismic-holography technique. As in previous works, the method is based on the comparison of waves going in and out of a particular point in the Sun but we have computed here the Green's functions from a spherical polar expansion of the adiabatic wave equations in the Cowling approximation instead of using the ray-path approximation previously used in the far-side holography. A comparison between the results obtained using the ray theory and the spherical polar expansion is shown. We use the gravito-acoustic wave equation in the local plane-parallel limit in both cases and for the latter we take the asymptotic approximation for the radial dependencies of the Green's function. As a result, improved images of the far-side can be obtained from the polar-expansion approximation, especially when combining the Green's functions corresponding to two and three skips. We also show that the phase corrections in the Green's functions due to the incorrect modeling of the uppermost layers of the Sun can be estimated from the eigenfrequencies of the normal modes of oscillation.Comment: 8 pages, 5 figures, Astrophysical Journal, accepted (2010

    Longevity and mortality of cats attending primary care veterinary practices in England

    Get PDF
    Enhanced knowledge on longevity and mortality in cats should support improved breeding, husbandry, clinical care and disease prevention strategies. The VetCompass research database of primary care veterinary practice data offers an extensive resource of clinical health information on companion animals in the UK. This study aimed to characterise longevity and mortality in cats, and to identify important demographic risk factors for compromised longevity. Crossbred cats were hypothesised to live longer than purebred cats. Descriptive statistics were used to characterise the deceased cats. Multivariable linear regression methods investigated risk factor association with longevity in cats that died at or after 5 years of age. From 118,016 cats attending 90 practices in England, 4009 cats with confirmed deaths were randomly selected for detailed study. Demographic characterisation showed that 3660 (91.7%) were crossbred, 2009 (50.7%) were female and 2599 (64.8%) were neutered. The most frequently attributed causes of mortality in cats of all ages were trauma (12.2%), renal disorder (12.1%), non-specific illness (11.2%), neoplasia (10.8%) and mass lesion disorders (10.2%). Overall, the median longevity was 14.0 years (interquartile range [IQR] 9.0–17.0; range 0.0–26.7). Crossbred cats had a higher median longevity than purebred cats (median [IQR] 14.0 years [9.1–17.0] vs 12.5 years [6.1–16.4]; P \u3c0.001), but individual purebred cat breeds varied substantially in longevity. In cats dying at or after 5 years (n = 3360), being crossbred, having a lower bodyweight, and being neutered and non-insured were associated with increased longevity. This study described longevity in cats and identified important causes of mortality and breed-related associations with compromised longevity

    Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    Full text link
    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM and CSM modes. Taken together our findings highlight that for transmission electron microscopy performed at low energies (energies <100 keV) thick hybrid pixel detectors provide an advantageous and alternative architecture for direct electron imagin

    Stellar Envelope Convection calibrated by Radiation Hydrodynamics Simulations: Influence on Globular Clusters Isochrones

    Get PDF
    One of the largest sources of uncertainty in the computation of globular cluster isochrones and hence in the age determination of globular clusters is the lack of a rigorous description of convection. Therefore, we calibrated the superadiabatic temperature gradient in the envelope of metal-poor low-mass stars according to the results from a new grid of 2D hydrodynamical models, which cover the Main Sequence and the lower Red Giant Branch of globular cluster stars. In practice, we still use for computing the evolutionary stellar models the traditional mixing length formalism, but we fix the mixing length parameter in order to reproduce the run of the entropy of the deeper adiabatic region of the stellar envelopes with effective temperature and gravity as obtained from the hydro-models. The detailed behaviour of the calibrated mixing length depends in a non-trivial way on the effective temperature, gravity and metallicity of the star. Nevertheless, the resulting isochrones for the relevant age range of galactic globular clusters have only small differences with respect to isochrones computed adopting a constant solar calibrated value of the mixing length. Accordingly, the age of globular clusters is reduced by 0.2 Gyr at most.Comment: 9 pages, 3 figures Accepted for publication in ApJ Letter

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks

    No full text
    We show that, for arbitrary quantum feedback networks consisting of several quantum mechanical components connected by quantum fields, the limit of adiabatic elimination of fast oscillator modes in the components and the limit of instantaneous transmission along internal quantum field connections commute. The underlying technique is to show that both limits involve a Schur complement procedure. The result shows that the frequently used approximations, for instance to eliminate strongly coupled optical cavities, are mathematically consistent

    Evolution of low-mass star and brown dwarf eclipsing binaries

    Full text link
    We examine the evolution of low-mass star and brown dwarf eclipsing binaries. These objects are rapid rotators and are believed to shelter large magnetic fields. We suggest that reduced convective efficiency, due to fast rotation and large field strengths, and/or to magnetic spot coverage of the radiating surface significantly affect their evolution, leading to a reduced heat flux and thus larger radii and cooler effective temperatures than for regular objects. We have considered such processes in our evolutionary calculations, using a phenomenological approach. This yields mass-radius and effective temperature-radius relationships in agreement with the observations. We also reproduce the effective temperature ratio and the radii of the two components of the recently discovered puzzling eclipsing brown dwarf system. These calculations show that fast rotation and/or magnetic activity may significantly affect the evolution of eclipsing binaries and that the mechanical and thermal properties of these objects depart from the ones of non-active low-mass objects. We find that, for internal field strengths compatible with the observed surface value of a few kiloGauss, convection can be severely inhibited. The onset of a central radiative zone for rapidly rotating active low-mass stars might thus occur below the usual \sim 0.35 \msol limit.Comment: to appear in A&A Letter

    Classical 5D fields generated by a uniformly accelerated point source

    Full text link
    Gauge fields associated with the manifestly covariant dynamics of particles in (3,1)(3,1) spacetime are five-dimensional. In this paper we explore the old problem of fields generated by a source undergoing hyperbolic motion in this framework. The 5D fields are computed numerically using absolute time τ\tau-retarded Green-functions, and qualitatively compared with Maxwell fields generated by the same motion. We find that although the zero mode of all fields coincides with the corresponding Maxwell problem, the non-zero mode should affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure

    Dynamical q-deformation in quantum theory and the stochastic limit

    Full text link
    A model of particle interacting with quantum field is considered. The model includes as particular cases the polaron model and non-relativistic quantum electrodynamics. We show that the field operators obey q-commutation relations with q depending on time. After the stochastic (or van Hove) limit, due to the nonlinearity, the atomic and field degrees of freedom become entangled in the sense that the field and the atomic variables no longer commute but give rise to a new algebra with new commutation relations replacing the Boson ones. This new algebra allows to give a simple proof of the fact that the non crossing half-planar diagrams give the dominating contribution in a weak coupling regime and to calculate explicitly the correlations associated to the new algebra. The above results depend crucially on the fact that we do not introduce any dipole or multipole approximation.Comment: Latex, 11 page
    corecore