2,039 research outputs found
Batch solution of small PDEs with the OPS DSL
In this paper we discuss the challenges and optimisations opportunities when solving a large number of small, equally sized discretised PDEs on regular grids. We present an extension of the OPS (Oxford Parallel library for Structured meshes) embedded Domain Specific Language, and show how support can be added for solving multiple systems, and how OPS makes it easy to deploy a variety of transformations and optimisations. The new capabilities in OPS allow to automatically apply data structure transformations, as well as execution schedule transformations to deliver high performance on a variety of hardware platforms. We evaluate our work on an industrially representative finance simulation on Intel CPUs, as well as NVIDIA GPUs
Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets
Transiting exoplanets in multi-planet systems have non-Keplerian orbits which
can cause the times and durations of transits to vary. The theory and
observations of transit timing variations (TTV) and transit duration variations
(TDV) are reviewed. Since the last review, the Kepler spacecraft has detected
several hundred perturbed planets. In a few cases, these data have been used to
discover additional planets, similar to the historical discovery of Neptune in
our own Solar System. However, the more impactful aspect of TTV and TDV studies
has been characterization of planetary systems in which multiple planets
transit. After addressing the equations of motion and parameter scalings, the
main dynamical mechanisms for TTV and TDV are described, with citations to the
observational literature for real examples. We describe parameter constraints,
particularly the origin of the mass/eccentricity degeneracy and how it is
overcome by the high-frequency component of the signal. On the observational
side, derivation of timing precision and introduction to the timing diagram are
given. Science results are reviewed, with an emphasis on mass measurements of
transiting sub-Neptunes and super-Earths, from which bulk compositions may be
inferred.Comment: Revised version. Invited review submitted to 'Handbook of
Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works,
Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at
https://github.com/ericagol/TTV_revie
Process evaluation of appreciative inquiry to translate pain management evidence into pediatric nursing practice
Background
Appreciative inquiry (AI) is an innovative knowledge translation (KT) intervention that is compatible with the Promoting Action on Research in Health Services (PARiHS) framework. This study explored the innovative use of AI as a theoretically based KT intervention applied to a clinical issue in an inpatient pediatric care setting. The implementation of AI was explored in terms of its acceptability, fidelity, and feasibility as a KT intervention in pain management.
Methods
A mixed-methods case study design was used. The case was a surgical unit in a pediatric academic-affiliated hospital. The sample consisted of nurses in leadership positions and staff nurses interested in the study. Data on the AI intervention implementation were collected by digitally recording the AI sessions, maintaining logs, and conducting individual semistructured interviews. Data were analysed using qualitative and quantitative content analyses and descriptive statistics. Findings were triangulated in the discussion.
Results
Three nurse leaders and nine staff members participated in the study. Participants were generally satisfied with the intervention, which consisted of four 3-hour, interactive AI sessions delivered over two weeks to promote change based on positive examples of pain management in the unit and staff implementation of an action plan. The AI sessions were delivered with high fidelity and 11 of 12 participants attended all four sessions, where they developed an action plan to enhance evidence-based pain assessment documentation. Participants labeled AI a 'refreshing approach to change' because it was positive, democratic, and built on existing practices. Several barriers affected their implementation of the action plan, including a context of change overload, logistics, busyness, and a lack of organised follow-up.
Conclusions
Results of this case study supported the acceptability, fidelity, and feasibility of AI as a KT intervention in pain management. The AI intervention requires minor refinements (e.g., incorporating continued follow-up meetings) to enhance its clinical utility and sustainability. The implementation process and effectiveness of the modified AI intervention require evaluation in a larger multisite study
Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome
We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet
Recommended from our members
Letter processing and font information during reading: beyond distinctiveness, where vision meets design
Letter identification is a critical front end of the
reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading
Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity
Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
- …
