23 research outputs found

    Relative judgement is relatively difficult: evidence against the role of relative judgement in absolute identification

    Get PDF
    A variety of processes have been put forward to explain absolute identification performance. One difference between current models of absolute identification is the extent to which the task involves accessing stored representations in long-term memory (e.g. exemplars in memory, Kent & Lamberts, Journal of Experimental Psychology: Learning Memory and Cognition, 31, 289–305, 2005) or relative judgement (comparison of the current stimulus to the stimulus on the previous trial, Stewart, Brown & Chater, Psychological Review, 112, 881–911, 2005). In two experiments we explored this by tapping into these processes. In Experiment 1 participants completed an absolute identification task using eight line lengths whereby a single stimulus was presented on each trial for identification. They also completed a matching task aimed at mirroring exemplar comparison in which eight line lengths were presented in a circular array and the task was to report which of these matched a target presented centrally. Experiment 2 was a relative judgement task and was similar to Experiment 1 except that the task was to report the difference (jump-size) between the current stimulus and that on the previous trial. The absolute identification and matching data showed clear similarities (faster and more accurate responding for stimuli near the edges of the range and similar stimulus-response confusions). In contrast, relative judgment performance was poor suggesting relative judgement is not straightforward. Moreover, performance as a function of jump-size differed considerably between the relative judgement and absolute identification tasks. Similarly, in the relative judgement task, predicting correct stimulus identification based on successful relative judgement yielded the reverse pattern of performance observed in the absolute identification task. Overall, the data suggest that relative judgement does not underlie absolute identification and that the task is more likely reliant on an exemplar comparison process

    Modeling judgment of sequentially presented categories using weighting and sampling without replacement

    No full text
    In a series of experiments, Kusev et al. (Journal of Experimental Psychology: Human Perception and Performance 37:1874-1886, 2011) studied relative-frequency judgments of items drawn from two distinct categories. The experiments showed that the judged frequencies of categories of sequentially encountered stimuli are affected by the properties of the experienced sequences. Specifically, a first-run effect was observed, whereby people overestimated the frequency of a given category when that category was the first repeated category to occur in the sequence. Here, we (1) interpret these findings as reflecting the operation of a judgment heuristic sensitive to sequential patterns, (2) present mathematical definitions of the sequences used in Kusev et al. (Journal of Experimental Psychology: Human Perception and Performance 37:1874-1886, 2011), and (3) present a mathematical formalization of the first-run effect-the judgments-relative-to-patterns model-to account for the judged frequencies of sequentially encountered stimuli. The model parameter w accounts for the effect of the length of the first run on frequency estimates, given the total sequence length. We fitted data from Kusev et al. (Journal of Experimental Psychology: Human Perception and Performance 37:1874-1886, 2011) to the model parameters, so that with increasing values of w, subsequent items in the first run have less influence on judgments. We see the role of the model as essential for advancing knowledge in the psychology of judgments, as well as in other disciplines, such as computer science, cognitive neuroscience, artificial intelligence, and human-computer interaction
    corecore