1,926 research outputs found
Experimental real-time multi-model ensemble (MME) prediction of rainfall during monsoon 2008: Large-scale medium-range aspects
Realistic simulation/prediction of the Asian summer monsoon rainfall on various space-time scales is a challenging scientific task. Compared to mid-latitudes, a proportional skill improvement in the prediction of monsoon rainfall in the medium range has not happened in recent years. Global models and data assimilation techniques are being improved for monsoon/tropics. However, multimodel ensemble (MME) forecasting is gaining popularity, as it has the potential to provide more information for practical forecasting in terms of making a consensus forecast and handling model uncertainties. As major centers are exchanging model output in near real-time, MME is a viable inexpensive way of enhancing the forecasting skill and information content. During monsoon 2008, on an experimental basis, an MME forecasting of large-scale monsoon precipitation in the medium range was carried out in real-time at National Centre for Medium Range Weather Forecasting (NCMRWF), India. Simple ensemble mean (EMN) giving equal weight to member models, biascorrected ensemble mean (BCEMn) and MME forecast, where different weights are given to member models, are the products of the algorithm tested here. In general, the aforementioned products from the multi-model ensemble forecast system have a higher skill than individual model forecasts. The skill score for the Indian domain and other sub-regions indicates that the BCEMn produces the best result, compared to EMN and MME. Giving weights to different models to obtain an MME product helps to improve individual member models only marginally. It is noted that for higher rainfall values, the skill of the global model rainfall forecast decreases rapidly beyond day-3, and hence for day-4 and day-5, the MME products could not bring much improvement over member models. However, up to day-3, the MME products were always better than individual member models
Circuit dissection of the role of somatostatin in itch and pain
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide
A critical evaluation of network and pathway based classifiers for outcome prediction in breast cancer
Recently, several classifiers that combine primary tumor data, like gene
expression data, and secondary data sources, such as protein-protein
interaction networks, have been proposed for predicting outcome in breast
cancer. In these approaches, new composite features are typically constructed
by aggregating the expression levels of several genes. The secondary data
sources are employed to guide this aggregation. Although many studies claim
that these approaches improve classification performance over single gene
classifiers, the gain in performance is difficult to assess. This stems mainly
from the fact that different breast cancer data sets and validation procedures
are employed to assess the performance. Here we address these issues by
employing a large cohort of six breast cancer data sets as benchmark set and by
performing an unbiased evaluation of the classification accuracies of the
different approaches. Contrary to previous claims, we find that composite
feature classifiers do not outperform simple single gene classifiers. We
investigate the effect of (1) the number of selected features; (2) the specific
gene set from which features are selected; (3) the size of the training set and
(4) the heterogeneity of the data set on the performance of composite feature
and single gene classifiers. Strikingly, we find that randomization of
secondary data sources, which destroys all biological information in these
sources, does not result in a deterioration in performance of composite feature
classifiers. Finally, we show that when a proper correction for gene set size
is performed, the stability of single gene sets is similar to the stability of
composite feature sets. Based on these results there is currently no reason to
prefer prognostic classifiers based on composite features over single gene
classifiers for predicting outcome in breast cancer
Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface
Recent theories and experiments have suggested that strong spin-orbit
coupling effects in certain band insulators can give rise to a new phase of
quantum matter, the so-called topological insulator, which can show macroscopic
entanglement effects. Such systems feature two-dimensional surface states whose
electrodynamic properties are described not by the conventional Maxwell
equations but rather by an attached axion field, originally proposed to
describe strongly interacting particles. It has been proposed that a
topological insulator with a single spin-textured Dirac cone interfaced with a
superconductor can form the most elementary unit for performing fault-tolerant
quantum computation. Here we present an angle-resolved photoemission
spectroscopy study and first-principle theoretical calculation-predictions that
reveal the first observation of such a topological state of matter featuring a
single-surface-Dirac-cone realized in the naturally occurring BiSe
class of materials. Our results, supported by our theoretical predictions and
calculations, demonstrate that undoped compound of this class of materials can
serve as the parent matrix compound for the long-sought topological device
where in-plane surface carrier transport would have a purely quantum
topological origin. Our study further suggests that the undoped compound
reached via n-to-p doping should show topological transport phenomena even at
room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
- …
