377 research outputs found
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
Clinical features, proximate causes, and consequences of active convulsive epilepsy in Africa.
PURPOSE: Epilepsy is common in sub-Saharan Africa (SSA), but the clinical features and consequences are poorly characterized. Most studies are hospital-based, and few studies have compared different ecological sites in SSA. We described active convulsive epilepsy (ACE) identified in cross-sectional community-based surveys in SSA, to understand the proximate causes, features, and consequences. METHODS: We performed a detailed clinical and neurophysiologic description of ACE cases identified from a community survey of 584,586 people using medical history, neurologic examination, and electroencephalography (EEG) data from five sites in Africa: South Africa; Tanzania; Uganda; Kenya; and Ghana. The cases were examined by clinicians to discover risk factors, clinical features, and consequences of epilepsy. We used logistic regression to determine the epilepsy factors associated with medical comorbidities. KEY FINDINGS: Half (51%) of the 2,170 people with ACE were children and 69% of seizures began in childhood. Focal features (EEG, seizure types, and neurologic deficits) were present in 58% of ACE cases, and these varied significantly with site. Status epilepticus occurred in 25% of people with ACE. Only 36% received antiepileptic drugs (phenobarbital was the most common drug [95%]), and the proportion varied significantly with the site. Proximate causes of ACE were adverse perinatal events (11%) for onset of seizures before 18 years; and acute encephalopathy (10%) and head injury prior to seizure onset (3%). Important comorbidities were malnutrition (15%), cognitive impairment (23%), and neurologic deficits (15%). The consequences of ACE were burns (16%), head injuries (postseizure) (1%), lack of education (43%), and being unmarried (67%) or unemployed (57%) in adults, all significantly more common than in those without epilepsy. SIGNIFICANCE: There were significant differences in the comorbidities across sites. Focal features are common in ACE, suggesting identifiable and preventable causes. Malnutrition and cognitive and neurologic deficits are common in people with ACE and should be integrated into the management of epilepsy in this region. Consequences of epilepsy such as burns, lack of education, poor marriage prospects, and unemployment need to be addressed
Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome
<p><u>(A) Circular map of the <i>E</i>. <i>coli</i> chromosome</u>: <i>oriC</i>, <i>dif</i> and <i>terD</i> to <i>terB</i> sites are indicated. Numbers refer to the chromosome coordinates (in kb) of MG1655. (<u>B) Linear map of the terminus region:</u> chromosome coordinates are shown increasing from left to right, as in the marker frequency panels (see Figure 1C for example), therefore in the opposite direction to the circular map. In addition to <i>dif</i> and <i>ter</i> sites, the positions of the <i>parS</i><sub>pMT1</sub> sites used for microscopy experiments are indicated. (<u>C) MFA analysis of terminus DNA loss in the <i>recB</i> mutant</u>: sequence read frequencies of exponential phase cells normalized to the total number of reads were calculated for each strain. Ratios of normalized reads in isogenic wild-type and <i>recB</i> mutant are plotted against chromosomal coordinates (in kb). The profile ratio of the terminus region is enlarged and the profile of the corresponding entire chromosomes is shown in inset. Original normalized profiles used to calculate ratios are shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.s005" target="_blank">S1 Fig</a>. The position of <i>dif</i> is indicated by a red arrow. The <i>ter</i> sites that arrest clockwise forks (<i>terC</i>, <i>terB</i>, green arrow) and counter-clockwise forks (<i>terA</i>, <i>terD</i>, blue arrow) are shown. <u>(D) Schematic representation of focus loss in the <i>recB</i> mutant:</u> Time-lapse microscopy experiments showed that loss of a focus in the <i>recB</i> mutant occurs concomitantly with cell division in one of two daughter cells, and that the cell that keeps the focus then generates a focus-less cell at each generation. The percentage of initial events was calculated as the percentage of cell divisions that generate a focus-less cell, not counting the following generations. In this schematic representation, two initial events occurred (generations #2 and #7) out of 9 generations, and focus loss at generation #2 is heritable. Panels shown in this figure were previously published in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.ref019" target="_blank">19</a>] and are reproduced here to introduce the phenomenon.</p
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854
Operation and performance of the ATLAS Tile Calorimeter in Run 1
The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report
Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene
Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10-6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted. © 2014 Plenge et al
Urological complication following aortoiliac graft: case report and review of the literature
Design of a Bovine Low-Density SNP Array Optimized for Imputation
The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle
Identification of Novel Predictor Classifiers for Inflammatory Bowel Disease by Gene Expression Profiling
BACKGROUND: Improvement of patient quality of life is the ultimate goal of biomedical research, particularly when dealing with complex, chronic and debilitating conditions such as inflammatory bowel disease (IBD). This is largely dependent on receiving an accurate and rapid diagnose, an effective treatment and in the prediction and prevention of side effects and complications. The low sensitivity and specificity of current markers burden their general use in the clinical practice. New biomarkers with accurate predictive ability are needed to achieve a personalized approach that take the inter-individual differences into consideration. METHODS: We performed a high throughput approach using microarray gene expression profiling of colon pinch biopsies from IBD patients to identify predictive transcriptional signatures associated with intestinal inflammation, differential diagnosis (Crohn's disease or ulcerative colitis), response to glucocorticoids (resistance and dependence) or prognosis (need for surgery). Class prediction was performed with self-validating Prophet software package. RESULTS: Transcriptional profiling divided patients in two subgroups that associated with degree of inflammation. Class predictors were identified with predictive accuracy ranging from 67 to 100%. The expression accuracy was confirmed by real time-PCR quantification. Functional analysis of the predictor genes showed that they play a role in immune responses to bacteria (PTN, OLFM4 and LILRA2), autophagy and endocytocis processes (ATG16L1, DNAJC6, VPS26B, RABGEF1, ITSN1 and TMEM127) and glucocorticoid receptor degradation (STS and MMD2). CONCLUSIONS: We conclude that using analytical algorithms for class prediction discovery can be useful to uncover gene expression profiles and identify classifier genes with potential stratification utility of IBD patients, a major step towards personalized therapy
- …
