95 research outputs found
Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells
Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I
demonstrate a novel generic mechanism, diversity, that provokes the emergence
of global oscillations from individually quiescent elements in heterogeneous
excitable media. This mechanism may be operating in the mammalian pancreas,
where excitable beta cells, quiescent when isolated, are found to oscillate
when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya
Pulsatility of insulin release – a clinically important phenomenon
The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood
Inhibition of Purinoceptors Amplifies Glucose-Stimulated Insulin Release With Removal of its Pulsatility
Glucose and tolbutamide trigger transients of Ca2+ in single pancreatic B-cells exposed to tetraethylammonium
Glucagon amplifies tetrodotoxin-resistant Na+ oscillations in glucose-stimulated pancreatic B-cells
Unmasking of a periodic Na+ entry into glucose-stimulated pancreatic B-cells after partial inhibition of the Na/K pump
Glucose and tolbutamide trigger transients of Ca2+in single pancreaticβ-cells exposed to tetraethylammonium
Disappearance of cytoplasmic Ca2+ oscillations is a sensitive indicator of photodamage in pancreatic b-cells
- …
