140 research outputs found
Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis
Acknowledgments We thank the European Research Council (ERC) (project GA 335910 VEWA) and Natural Environment Research Council (NERC) (project NE/K000268/1) for funding and the Airborne Research and Survey Facility for conducting the aerial survey. The data used are available from the authors. In addition, we would like to thank the additional support from Audrey Innes for the sample analysis and Maria Blumstock and Mike Kennedy for assisting with field work.Peer reviewedPublisher PD
Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence
[EN] This paper proposes an interpolation model for monthly rainfall in large areas of complex orography. It has been implemented in the Iberian Peninsula (continental territories of Spain and Portugal), Balearic and Canary Islands covering a territory of almost 600.000km(2). To do this a data set that comprises a total number of 11,822 monthly precipitation series has been created (11,042 provided by the Spanish Meteorological Agency and 780 provided by the National Water Resources Information System of the Portuguese Water Institute). The data set covers the period from October 1940 until September 2005. The interpolation model has been based on the assumption of two different components on monthly precipitation. The first component reflects local and seasonal characteristics and 24 different mean monthly precipitation maps (12) and SDs maps (12) compose it. It considers the varying influence of physiographic variables such as altitude and orientation. The second precipitation component reflects the synoptic pattern that dominated each month of the series and it is composed by series of anomalies of monthly precipitation (780). Anomalies have been interpolated by means of ordinary kriging once local spatial continuity was assumed. Gridded maps of each variable have been developed at 200m resolution following a hybrid methodology that implements two different interpolation techniques. The first technique applies a regression analysis to derive maps depending on altitude and orientation; the second one is a weighting technique to consider the non-linearity of the precipitation/altitude dependence. Cross validation has been applied to estimate the goodness of both techniques. Results show an average annual precipitation of 655mm/year. Although this figure is only 4% less than the estimate of MAGRAMA (2004), regional and local differences are highlighted when the spatial distribution is considered. The model constitutes a comprehensive implementation considering the availability of historical records and the need of avoiding slow calculations in large territories.Ministry of Economy, Industry and Competitiveness, Grant/Award Number: CGL2014-52571-RÁlvarez-Rodríguez, J.; Llasat, M.; Estrela Monreal, T. (2019). Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence. International Journal of Climatology. 39(10):3962-3975. https://doi.org/10.1002/joc.6051S396239753910AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil EngineeringÁlvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. doi:10.5194/nhess-4-29-2004Barstad, I., Grabowski, W. W., & Smolarkiewicz, P. K. (2007). Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 340(1-2), 78-90. doi:10.1016/j.jhydrol.2007.04.005Creutin, J. D., & Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resources Research, 18(2), 413-431. doi:10.1029/wr018i002p00413Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140-158. doi:10.1175/1520-0450(1994)0332.0.co;2Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., … Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15), 2031-2064. doi:10.1002/joc.1688Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., & Swift, L. W. (2017). High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology, 37, 124-137. doi:10.1002/joc.4986Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155-157. doi:10.1256/wea.87.03Falivene, O., Cabrera, L., Tolosana-Delgado, R., & Sáez, A. (2010). Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geosciences, 36(4), 512-519. doi:10.1016/j.cageo.2009.09.015Fiering, B., & Jackson, B. (1971). Synthetic Streamflows. Water Resources Monograph. doi:10.1029/wm001Gambolati, G., & Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625-629. doi:10.1029/wr015i003p00625Gómez-Hernández, J. J., Cassiraga, E. F., Guardiola-Albert, C., & Rodríguez, J. Á. (2001). Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. geoENV III — Geostatistics for Environmental Applications, 67-78. doi:10.1007/978-94-010-0810-5_6Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129. doi:10.1016/s0022-1694(00)00144-xHanson, C. L. (1982). DISTRIBUTION AND STOCHASTIC GENERATION OF ANNUAL AND MONTHLY PRECIPITATION ON A MOUNTAINOUS WATERSHED IN SOUTHWEST IDAHO. Journal of the American Water Resources Association, 18(5), 875-883. doi:10.1111/j.1752-1688.1982.tb00085.xLloyd, C. D. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150. doi:10.1016/j.jhydrol.2004.10.026Marquı́nez, J., Lastra, J., & Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1-2), 1-11. doi:10.1016/s0022-1694(02)00110-5Martínez-Cob, A. (1996). Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. Journal of Hydrology, 174(1-2), 19-35. doi:10.1016/0022-1694(95)02755-6Mitáš, L., & Mitášová, H. (1988). General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12), 983-992. doi:10.1016/0898-1221(88)90255-6Naoum, S., & Tsanis, I. K. (2004). Orographic Precipitation Modeling with Multiple Linear Regression. Journal of Hydrologic Engineering, 9(2), 79-102. doi:10.1061/(asce)1084-0699(2004)9:2(79)Ninyerola, M., Pons, X., & Roure, J. M. (2006). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, 89(3-4), 195-209. doi:10.1007/s00704-006-0264-2Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012Rotunno, R., & Ferretti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Sciences, 58(13), 1732-1749. doi:10.1175/1520-0469(2001)0582.0.co;2Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrology Research, 26(4-5), 259-284. doi:10.2166/nh.1995.0015Tabios, G. Q., & Salas, J. D. (1985). A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION. Journal of the American Water Resources Association, 21(3), 365-380. doi:10.1111/j.1752-1688.1985.tb00147.xTHIESSEN, A. H. (1911). PRECIPITATION AVERAGES FOR LARGE AREAS. Monthly Weather Review, 39(7), 1082-1089. doi:10.1175/1520-0493(1911)392.0.co;2Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. doi:10.1007/bf00891270Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26(5), 589-603. doi:10.1007/bf02089243World Climate Programme.1985. World Meteorological Organization. Review of Requirements for Area‐Averaged Precipitation Data Surface‐Based and Space‐Based Estimation Techniques Space and Time Sampling Accurancy and Error; Data Exchange. Boulder Colorado EE.UU. 17–1
A new model for ancient DNA decay based on paleogenomic meta-analysis
The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics
Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps
The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains.
Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover.
Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics
Quantifying the effect of landscape structure on transport costs for biorefinery of agricultural and forestry wastes in Malaysia
In the context of climate change, sustainable biorefinery helps to mitigate carbon emissions. This paper examines how landscape structure metrics allow us to better understand the economics of agricultural and forestry wastes transportation. To verify that the landscape structure plays a significant role, we quantify the fragmentation of various lignocellulosic feedstock in Malaysia, as a typical tropical country. Fragmentation is compared with the variations of truck size, transport distance, and biomass nature. We use GRASS GIS to develop a series of transport cost maps, to quantify feedstocks, to run various biomass transport simulations, optimize locations of potential biorefineries, and to compute landscape structure metrics. We find that the cost of 1 million tonnes feedstock increases by more than 4 USD/tonne for every added unit of edge density (fragmentation index). It also increases by more than 6 USD/tonne for every added 100 km of average transportation. The average truck size has also a strong nonlinear relation to the cost with −84 USD/tonne when changing from 3‐ to 26‐tonne trucks. To our knowledge, this is the first paper to address simultaneously fragmentation with the other classical logistic factors in a tropical country like Malaysia. It has strong implications for policymakers: the importance of the landscape structure makes a seemingly abundant biomass not viable for biorefineries if too fragmented compared to a much less abundant one, but more concentrated. It also implies that in tropical countries where the landscape is typically very fragmented, multi‐crop feedstocks could be considered for sustainable biorefineries
Impacts of 21st‐century climate change on montane habitat in the Madrean Sky Island Archipelago
Aim The Madrean Sky Island Archipelago is a North American biodiversity hotspot composed of similar to 60 isolated mountains that span the Cordilleran Gap between the Rocky Mountains and the Sierra Madre Occidental. Characterized by discrete patches of high-elevation montane habitat, these "sky islands" serve as stepping stones across a "sea" of desert scrub/grassland. Over this coming century, the region is expected to shift towards a warmer and drier climate. We used species distribution modelling to predict how the spatial distribution of montane habitat will be affected by climate change. Location Madrean Sky Island Archipelago, south-west United States and north-west Mexico (latitude, 29-34 degrees N; longitude, 107-112 degrees W). Methods To approximate the current distribution of montane habitat, we built species distribution models for five high-elevation species (Ceanothus fendleri, Pinus strobiformis, Quercus gambelii, Sciurus aberti, and Synuchus dubius). The resulting models were projected under multiple climate change scenarios-four greenhouse gas concentration trajectories (RCP 2.6, 4.5, 6.0, and 8.5) for each of three climate models (CCSM4, MPI-ESM-LR, and NorESM1-M)-to generate predicted distributions for the years 2050 and 2070. We performed chi-squared tests to detect any future changes to total montane habitat area, and Conover-Iman tests to evaluate isolation among the discrete montane habitat patches. Results While the climate models differ with respect to their predictions as to how severe the effects of future climate change will be, they all agree that by as early as year 2050, there will be significant montane habitat loss and increased montane habitat patch isolation across the Madrean Archipelago region under a worst-case climate change scenario (RCP 8.5). Main conclusions Our results suggest that under 21st-century climate change, the Madrean Sky Islands will become increasingly isolated due to montane habitat loss. This may affect their ability to serve as stepping stones and have negative implications for the region's biodiversity.University of Arizona Center for Insect ScienceOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
The influence of red deer space use on the distribution of Ixodes ricinus ticks in the landscape
Recent range expansion in Australian hummock grasses (Triodia) inferred using genotyping-by-sequencing
- …
