33,367 research outputs found
Oscillations in the Primordial Bispectrum: Mode Expansion
We consider the presence of oscillations in the primordial bispectrum,
inspired by three different cosmological models; features in the primordial
potential, resonant type non-Gaussianities and deviation from the standard
Bunch Davies vacuum. In order to put constraints on their bispectra, a logical
first step is to put these into factorized form which can be achieved via the
recently proposed method of polynomial basis expansion on the tetrahedral
domain. We investigate the viability of such an expansion for the oscillatory
bispectra and find that one needs an increasing number of orthonormal mode
functions to achieve significant correlation between the expansion and the
original spectrum as a function of their frequency. To reduce the number of
modes required, we propose a basis consisting of Fourier functions
orthonormalized on the tetrahedral domain. We show that the use of Fourier mode
functions instead of polynomial mode functions can lead to the necessary
factorizability with the use of only 1/5 of the total number of modes required
to reconstruct the bispectra with polynomial mode functions. Moreover, from an
observational perspective, the expansion has unique signatures depending on the
orientation of the oscillation due to a resonance effect between the mode
functions and the original spectrum. This effect opens the possibility to
extract informa- tion about both the frequency of the bispectrum as well as its
shape while considering only a limited number of modes. The resonance effect is
independent of the phase of the reconstructed bispectrum suggesting Fourier
mode extraction could be an efficient way to detect oscillatory bispectra in
the data.Comment: 17 pages, 12 figures. Matches published versio
Integrated controls/structures study of advanced space systems
A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established
Advanced beaded and tubular structural panels
A program to develop lightweight beaded and tubular structural panels is described. Applications include external surfaces, where aerodynamically acceptable, and primary structure protected by heat shields. The design configurations were optimized and selected with a computer code which iterates geometric parameters to satisfy strength, stability, and weight constraints. Methods of fabricating these configurations are discussed. Nondestructive testing produced extensive combined compression, shear, and bending test data on local buckling specimens and large panels. The optimized design concepts offer 25 to 30% weight savings compared to conventional stiffened sheet construction
Exact treatment of states
Using the basic ingredient of supersymmetry, a general procedure for the
treatment of quantum states having nonzero angular momenta is presented.Comment: 7 pages article in LaTEX (uses standard article.sty). No Figures.
Accepted by Chinese Physics Letters (2004, vol 21. No.9
Design and fabrication of Rene 41 advanced structural panels
The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented
Preliminary guide to the indentification of the early life history stages of Callionymid fishes of the Western Central Atlantic
Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages
On the Approximation of the Quantum Gates using Lattices
A central question in Quantum Computing is how matrices in can be
approximated by products over a small set of "generators". A topology will be
defined on so as to introduce the notion of a covering exponent
\cite{letter}, which compares the length of products required to covering
with balls against the Haar measure of
balls. An efficient universal set over will be constructed using the
Pauli matrices, using the metric of the covering exponent. Then, the
relationship between and will be manipulated to correlate angles
between points on and give a conjecture on the maximum of angles between
points on a lattice. It will be shown how this conjecture can be used to
compute the covering exponent, and how it can be generalized to universal sets
in .Comment: This is an updated version of arxiv.org:1506.0578
Preheating of Fermions
In inflationary cosmology, the particles constituting the Universe are
created after inflation in the process of reheating due to their interaction
with the oscillating inflaton field. In the bosonic sector, the leading channel
of particle production is the non-perturbative regime of parametric resonance,
preheating, during which bosons are created exponentially fast. Pauli blocking
prohibits the unbounded creation of fermions. For this reason, it has been
silently assumed that the creation of fermions can be treated with perturbation
theory for the decay of individual inflatons. We consider the production of
fermions interacting with the coherently oscillating inflatons. We find that
the actual particle production occurs in a regime of the parametric excitation
of fermions, leading to preheating of fermions. Fermion preheating differs
significantly from the perturbative expectation. It turns out that the number
density of fermions varies periodically with time. The total number of fermions
quickly saturates to an average value within a broad range of momenta , where is the usual resonance parameter. The resonant excitation
of fermions may affect the transfer inflaton energy, estimations of the
reheating temperature, and the abundance of superheavy fermions and gravitinos.
Back in the bosonic sector, outside of the parametric resonance bands there is
an additional effect of parametric excitation of bosons with bounded occupation
number in the momentum range .Comment: LaTex 5 pages, 6 figs, submitted for publicatio
- …
