544 research outputs found
Is null-point reconnection important for solar flux emergence?
The role of null-point reconnection in a 3D numerical MHD model of solar
emerging flux is investigated. The model consists of a twisted magnetic flux
tube rising through a stratified convection zone and atmosphere to interact and
reconnect with a horizontal overlying magnetic field in the atmosphere. Null
points appear as the reconnection begins and persist throughout the rest of the
emergence, where they can be found mostly in the model photosphere and
transition region, forming two loose clusters on either side of the emerging
flux tube. Up to 26 nulls are present at any one time, and tracking in time
shows that there is a total of 305 overall, despite the initial simplicity of
the magnetic field configuration. We find evidence for the reality of the nulls
in terms of their methods of creation and destruction, their balance of signs,
their long lifetimes, and their geometrical stability. We then show that due to
the low parallel electric fields associated with the nulls, null-point
reconnection is not the main type of magnetic reconnection involved in the
interaction of the newly emerged flux with the overlying field. However, the
large number of nulls implies that the topological structure of the magnetic
field must be very complex and the importance of reconnection along separators
or separatrix surfaces for flux emergence cannot be ruled out.Comment: 26 pages, 12 figures. Added one referenc
Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model
Practically, all chemotherapeutic agents lead to drug resistance. Clinically,
it is a challenge to determine whether resistance arises prior to, or as a
result of, cancer therapy. Further, a number of different intracellular and
microenvironmental factors have been correlated with the emergence of drug
resistance. With the goal of better understanding drug resistance and its
connection with the tumor microenvironment, we have developed a hybrid
discrete-continuous mathematical model. In this model, cancer cells described
through a particle-spring approach respond to dynamically changing oxygen and
DNA damaging drug concentrations described through partial differential
equations. We thoroughly explored the behavior of our self-calibrated model
under the following common conditions: a fixed layout of the vasculature, an
identical initial configuration of cancer cells, the same mechanism of drug
action, and one mechanism of cellular response to the drug. We considered one
set of simulations in which drug resistance existed prior to the start of
treatment, and another set in which drug resistance is acquired in response to
treatment. This allows us to compare how both kinds of resistance influence the
spatial and temporal dynamics of the developing tumor, and its clonal
diversity. We show that both pre-existing and acquired resistance can give rise
to three biologically distinct parameter regimes: successful tumor eradication,
reduced effectiveness of drug during the course of treatment (resistance), and
complete treatment failure
Magnetic trapping of ultracold neutrons
Three-dimensional magnetic confinement of neutrons is reported. Neutrons are
loaded into an Ioffe-type superconducting magnetic trap through inelastic
scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low
energy and in the appropriate spin state are confined by the magnetic field
until they decay. The electron resulting from neutron decay produces
scintillations in the liquid helium bath that results in a pulse of extreme
ultraviolet light. This light is frequency downconverted to the visible and
detected. Results are presented in which 500 +/- 155 neutrons are magnetically
trapped in each loading cycle, consistent with theoretical predictions. The
lifetime of the observed signal, 660 s +290/-170 s, is consistent with the
neutron beta-decay lifetime.Comment: 17 pages, 18 figures, accepted for publication in Physical Review
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang
We propose a cosmological scenario in which the hot big bang universe is
produced by the collision of a brane in the bulk space with a bounding orbifold
plane, beginning from an otherwise cold, vacuous, static universe. The model
addresses the cosmological horizon, flatness and monopole problems and
generates a nearly scale-invariant spectrum of density perturbations without
invoking superluminal expansion (inflation). The scenario relies, instead, on
physical phenomena that arise naturally in theories based on extra dimensions
and branes. As an example, we present our scenario predominantly within the
context of heterotic M-theory. A prediction that distinguishes this scenario
from standard inflationary cosmology is a strongly blue gravitational wave
spectrum, which has consequences for microwave background polarization
experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde
Narrative inquiry into (re)imagining alternative schools: a case study of Kevin Gonzales.
Although there are many alternative schools that strive for the successful education for their students, negative images of alternative schools persist. While some alternative schools are viewed as “idealistic havens,” many are viewed as “dumping grounds,” or “juvenile detention centers.” Employing narrative inquiry, this article interrogates how a student, Kevin Gonzales, experiences his alternative education and raises questions about the role of alternative schools. Kevin Gonzales’s story is presented in a literary form of biographical journal to provide a “metaphoric loft” that helps us imagine other students like Kevin. This, in turn, provokes us to examine our current educational practice, and to (re)imagine ways in which alternative education can provide the best possible educational experiences for disenfranchised students who are increasingly underserved by the public education system
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
- …
