15 research outputs found

    Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats

    Get PDF
    We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke.Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA's side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction.Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms

    Dicarboxylic acids, an alternate fuel substrate in parenteral nutrition: an update

    No full text
    Dicarboxylic acids (DA) are formed from the omega-oxidation of monocarboxylic acids when the beta-oxidation of free fatty acids is impaired. Medium-chain DA have the peculiar characteristic of being water soluble due to the presence of two carboxylic terminal groups in the molecule. Contrary to both long- and medium-chain triglycerides which are administered as emulsions, they can be given by a peripheral vein as inorganic salts. DA are beta-oxidized at level of both peroxisomes and mitochondria via carnitine-independent pathway. The products of beta-oxidation of odd-chain DA are acetyl-CoA and malonyl-CoA, which cannot be oxidized further, are used in lipogenesis. Moreover even-chain DA produce acetyl-CoA and succinyl-CoA, which is a gluconeogenetic precursor. Azelaic acid (C9), does not show acute or chronic toxicity effects in animals but much of it is lost in urine (more than 50% of the given dose). Sebacic acid (C10) is lost in urine to a smaller extent (about 12% of the administered dose) and its energy density (6.64 kcal/g) is greater than that of C9 (4.97 kcal/g). Dodecanedioic acid (C12) seems to be the best candidate for parenteral nutrition, because it is eliminated in the urine only in minimal amounts (3.90% of the given dose), it is rapidly utilized by tissues, and it has a high energy density (7.20 kcal/g)

    The genetic landscape of cardiomyopathies

    No full text
    Insights into genetic causes of cardiomyopathies have tremendously contributed to the understanding of the molecular basis and pathophysiology of hypertrophic, dilated, arrhythmogenic, restrictive and left ventricular noncompaction cardiomyopathy. More than thousand mutations in approximately 100 genes encoding proteins involved in many different subcellular systems have been identified indicating the diversity of pathways contributing to pathological cardiac remodeling. Moreover, the classical view based on morphology and physiology has been shifted toward genetic and molecular patterns defining the etiology of cardiomyopathies. Today, novel high-throughput genetic technologies provide an opportunity to diagnose individuals based on their genetic findings, sometimes before clinical signs of the disease occur. However, the challenge remains that rapid research developments and the complexity of genetic information are getting introduced into the clinical practice, which requires dedicated guidance in genetic counselling and interpretation of genetic test results for the management of families with inherited cardiomyopathies

    Molecular mechanisms of epithelial–mesenchymal transition

    No full text
    The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial–mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT
    corecore