2,501 research outputs found
Behavioural responses of reptile predators to invasive cane toads in tropical Australia
The ecological impact of an invasive species can depend on the behavioural responses of native fauna to the invader. For example, the greatest risk posed by invasive cane toads (Rhinella marinaBufonidae) in tropical Australia is lethal poisoning of predators that attempt to eat a toad; and thus, a predator's response to a toad determines its vulnerability. We conducted standardized laboratory trials on recently captured (toad-naïve) predatory snakes and lizards, in advance of the toad invasion front as it progressed through tropical Australia. Responses to a live edible-sized toad differed strongly among squamate species. We recorded attacks (and hence, predator mortality) in scincid, agamid and varanid lizards, and in elapid, colubrid and pythonid snakes. Larger-bodied predators were at greater risk, and some groups (elapid snakes and varanid lizards) were especially vulnerable. However, feeding responses differed among species within families and within genera. Some taxa (notably, many scincid and agamid lizards) do not attack toads; and many colubrid snakes either do not consume toads, or are physiologically resistant to the toad's toxins. Intraspecific variation in responses means that even in taxa that apparently are unaffected by toad invasion at the population level, some individual predators nonetheless may be fatally poisoned by invasive cane toads. © 2013 Ecological Society of Australia
Developing a New Definition and Assessing New Clinical Criteria for Septic Shock For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
IMPORTANCE: Septic shock currently refers to a state of acute circulatory failure associated with infection. Emerging biological insights and reported variation in epidemiology challenge the validity of this definition.
OBJECTIVE: To develop a new definition and clinical criteria for identifying septic shock in adults.
DESIGN, SETTING AND PARTICIPANTS: The Society of Critical Care Medicine and the European Society of Intensive Care Medicine convened a task force (19 participants) to revise current sepsis/septic shock definitions. Three sets of studies were conducted: (1) a systematic review and meta-analysis of observational studies in adults published between January 1, 1992, and December 25, 2015, to determine clinical criteria currently reported to identify septic shock and inform the Delphi process; (2) a Delphi study among the task force comprising 3 surveys and discussions of results from the systematic review, surveys, and cohort studies to achieve consensus on a new septic shock definition and clinical criteria; and (3) cohort studies to test variables identified by the Delphi process using Surviving Sepsis Campaign (SSC) (2005-2010; n = 28 150), University of Pittsburgh Medical Center (UPMC) (2010-2012; n = 1 309 025), and Kaiser Permanente Northern California (KPNC) (2009-2013; n = 1 847 165) electronic health record (EHR) data sets.
MAIN OUTCOMES AND MEASURES: Evidence for and agreement on septic shock definitions and criteria.
RESULTS: The systematic review identified 44 studies reporting septic shock outcomes (total of 166 479 patients) from a total of 92 sepsis epidemiology studies reporting different cutoffs and combinations for blood pressure (BP), fluid resuscitation, vasopressors, serum lactate level, and base deficit to identify septic shock. The septic shock–associated crude mortality was 46.5% (95% CI, 42.7%-50.3%), with significant between-study statistical heterogeneity (I2 = 99.5%; τ2 = 182.5; P < .001). The Delphi process identified hypotension, serum lactate level, and vasopressor therapy as variables to test using cohort studies. Based on these 3 variables alone or in combination, 6 patient groups were generated. Examination of the SSC database demonstrated that the patient group requiring vasopressors to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L (18 mg/dL) after fluid resuscitation had a significantly higher mortality (42.3% [95% CI, 41.2%-43.3%]) in risk-adjusted comparisons with the other 5 groups derived using either serum lactate level greater than 2 mmol/L alone or combinations of hypotension, vasopressors, and serum lactate level 2 mmol/L or lower. These findings were validated in the UPMC and KPNC data sets.
CONCLUSIONS AND RELEVANCE: Based on a consensus process using results from a systematic review, surveys, and cohort studies, septic shock is defined as a subset of sepsis in which underlying circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than sepsis alone. Adult patients with septic shock can be identified using the clinical criteria of hypotension requiring vasopressor therapy to maintain mean BP 65 mm Hg or greater and having a serum lactate level greater than 2 mmol/L after adequate fluid resuscitation
Multiple shifts and fractional integration in the us and uk unemployment rates
This paper analyses the long-run behaviour of the US and UK unemployment rates by testing for possibly fractional orders of integration and multiple shifts using a sample of over 100 annual observations. The results show that the orders of integration are higher than 0 in both series, which implies long memory. If we assume that the underlying disturbances are white noise, the values are higher than 0.5, i.e., nonstationary. However, if the disturbances are autocorrelated, the orders of integration are in the interval (0, 0.5), implying stationarity and mean-reverting behaviour. Moreover, when multiple shifts are taken into account, unemployment is more persistent in the US than in the UK, implying the need for stronger policy action in the former to bring unemployment back to its original level
Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial
Background: Many emergency ambulance calls are for older people who have fallen. As half of them are left at home, a community-based response may often be more appropriate than hospital attendance. The SAFER 1 trial will assess the costs and benefits of a new healthcare technology - hand-held computers with computerised clinical decision support (CCDS) software - to help paramedics decide who needs hospital attendance, and who can be safely left at home with referral to community falls services.
Methods/Design: Pragmatic cluster randomised trial with a qualitative component. We shall allocate 72 paramedics ('clusters') at random between receiving the intervention and a control group delivering care as usual, of whom we expect 60 to complete the trial.
Patients are eligible if they are aged 65 or older, live in the study area but not in residential care, and are attended by a study paramedic following an emergency call for a fall. Seven to 10 days after the index fall we shall offer patients the opportunity to opt out of further follow up. Continuing participants will receive questionnaires after one and 6 months, and we shall monitor their routine clinical data for 6 months. We shall interview 20 of these patients in depth. We shall conduct focus groups or semi-structured interviews with paramedics and other stakeholders.
The primary outcome is the interval to the first subsequent reported fall (or death). We shall analyse this and other measures of outcome, process and cost by 'intention to treat'. We shall analyse qualitative data thematically.
Discussion: Since the SAFER 1 trial received funding in August 2006, implementation has come to terms with ambulance service reorganisation and a new national electronic patient record in England. In response to these hurdles the research team has adapted the research design, including aspects of the intervention, to meet the needs of the ambulance services.
In conclusion this complex emergency care trial will provide rigorous evidence on the clinical and cost effectiveness of CCDS for paramedics in the care of older people who have fallen
Control of microwave signals using circuit nano-electromechanics
Waveguide resonators are crucial elements in sensitive astrophysical
detectors [1] and circuit quantum electrodynamics (cQED) [2]. Coupled to
artificial atoms in the form of superconducting qubits [3, 4], they now provide
a technologically promising and scalable platform for quantum information
processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum
systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13]
or mechanical oscillators [14, 15] has been explored to realize hybrid systems
with extended functionality. Here, we couple a superconducting coplanar
waveguide resonator to a nano-coshmechanical oscillator, and demonstrate
all-microwave field controlled slowing, advancing and switching of microwave
signals. This is enabled by utilizing electromechanically induced transparency
[16-18], an effect analogous to electromagnetically induced transparency (EIT)
in atomic physics [19]. The exquisite temporal control gained over this
phenomenon provides a route towards realizing advanced protocols for storage of
both classical and quantum microwave signals [20-22], extending the toolbox of
control techniques of the microwave field.Comment: 9 figure
Recommended from our members
Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: a descriptive analysis of a prospective observational study.
BACKGROUND: Time to antibiotic administration is a key element in sepsis care; however, it is difficult to implement sepsis care bundles. Additionally, sepsis is different from other emergent conditions including acute coronary syndrome, stroke, or trauma. We aimed to describe the association between time to antibiotic administration and outcomes in patients with severe sepsis and septic shock in Japan. METHODS: This prospective observational study enrolled 1184 adult patients diagnosed with severe sepsis based on the Sepsis-2 criteria and admitted to 59 intensive care units (ICUs) in Japan between January 1, 2016, and March 31, 2017, as the sepsis cohort of the Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) study. We compared the characteristics and in-hospital mortality of patients administered with antibiotics at varying durations after sepsis recognition, i.e., 0-60, 61-120, 121-180, 181-240, 241-360, and 361-1440 min, and estimated the impact of antibiotic timing on risk-adjusted in-hospital mortality using the generalized estimating equation model (GEE) with an exchangeable, within-group correlation matrix, with "hospital" as the grouping variable. RESULTS: Data from 1124 patients in 54 hospitals were used for analyses. Of these, 30.5% and 73.9% received antibiotics within 1 h and 3 h, respectively. Overall, the median time to antibiotic administration was 102 min [interquartile range (IQR), 55-189]. Compared with patients diagnosed in the emergency department [90 min (IQR, 48-164 min)], time to antibiotic administration was shortest in patients diagnosed in ICUs [60 min (39-180 min)] and longest in patients transferred from wards [120 min (62-226)]. Overall crude mortality was 23.4%, where patients in the 0-60 min group had the highest mortality (28.0%) and a risk-adjusted mortality rate [28.7% (95% CI 23.3-34.1%)], whereas those in the 61-120 min group had the lowest mortality (20.2%) and risk-adjusted mortality rates [21.6% (95% CI 16.5-26.6%)]. Differences in mortality were noted only between the 0-60 min and 61-120 min groups. CONCLUSIONS: We could not find any association between earlier antibiotic administration and reduction in in-hospital mortality in patients with severe sepsis
Cavity Induced Interfacing of Atoms and Light
This chapter introduces cavity-based light-matter quantum interfaces, with a
single atom or ion in strong coupling to a high-finesse optical cavity. We
discuss the deterministic generation of indistinguishable single photons from
these systems; the atom-photon entanglement intractably linked to this process;
and the information encoding using spatio-temporal modes within these photons.
Furthermore, we show how to establish a time-reversal of the aforementioned
emission process to use a coupled atom-cavity system as a quantum memory. Along
the line, we also discuss the performance and characterisation of cavity
photons in elementary linear-optics arrangements with single beam splitters for
quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
