11 research outputs found
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
This article is meant as a summary and introduction to the ideas of effective
field theory as applied to gravitational systems.
Contents:
1. Introduction
2. Effective Field Theories
3. Low-Energy Quantum Gravity
4. Explicit Quantum Calculations
5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living
Reviews of Relativit
Tools for landscape science: theory, models and data
We review the different roles of theory, models and data in landscape science. The need for science at the landscape scale is argued. Landscape theory is considered as a repository of probabilistic patterns rather than as a collection of laws of nature. We present a typology of such patterns for five distinct landscape features: land cover, land use, patch properties, patch interactions, exogenous influences. We show how theory for these features can support landscape modelling, and we provide a checklist of questions for model developers. The limited availability of data on landscapes is discussed, and how that leads to uncertainties in theoretical patterns as well as models. We analyse how probability theory can be used to account for these uncertainties, strengthening the links between theory, models and data, and facilitating decision-support
Fabrication of Thermoelectric Devices Using Thermal Spray: Application to Vehicle Exhaust Systems
Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia
Central nervous system myeloid cells as drug targets: current status and translational challenges
Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic
